Epigenetics in Plasmodium: What Do We Really Know?

ABSTRACT In the burgeoning field of Plasmodium gene expression, there are—to borrow some famous words from a former U.S. Secretary of Defense—“known knowns, known unknowns, and unknown unknowns.” This is in itself an important achievement, since it is only in the past decade that facts have begun to move from the third category into the first. Nevertheless, much remains in the middle ground of known or suspected “unknowns.” It is clear that the malaria parasite controls vital virulence processes such as host cell invasion and cytoadherence at least partly via epigenetic mechanisms, so a proper understanding of epigenetic transcriptional control in this organism should have great clinical relevance. Plasmodium, however, is an obligate intracellular parasite: it operates not in a vacuum but rather in the complicated context of its metazoan hosts. Therefore, as valuable data about the parasite's basic epigenetic machinery begin to emerge, it becomes increasingly important to relate in vitro studies to the situation in vivo. This review will focus upon the challenge of understanding Plasmodium epigenetics in an integrated manner, in the human and insect hosts as well as the petri dish.

[1]  H. Stunnenberg,et al.  Malaria: could its unusual epigenome be the weak spot? , 2010, The international journal of biochemistry & cell biology.

[2]  L. Cui,et al.  The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum , 2010, Journal of Cell Science.

[3]  Peter Preiser,et al.  The pir multigene family of Plasmodium: antigenic variation and beyond. , 2010, Molecular and biochemical parasitology.

[4]  Richard Bartfai,et al.  A Major Role for the Plasmodium falciparum ApiAP2 Protein PfSIP2 in Chromosome End Biology , 2010, PLoS pathogens.

[5]  Masao Yuda,et al.  Transcription factor AP2‐Sp and its target genes in malarial sporozoites , 2010, Molecular microbiology.

[6]  S. Lonardi,et al.  Supplemental Material to : Nucleosome landscape and control of transcription in the human malaria parasite , 2009 .

[7]  K. Zhao,et al.  Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion , 2010, Proceedings of the National Academy of Sciences.

[8]  Zbynek Bozdech,et al.  Histone Deacetylases Play a Major Role in the Transcriptional Regulation of the Plasmodium falciparum Life Cycle , 2010, PLoS pathogens.

[9]  Liwang Cui,et al.  Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes , 2009, BMC Genomics.

[10]  Suresh V. Chinni,et al.  A global view of the nonprotein-coding transcriptome in Plasmodium falciparum , 2009, Nucleic acids research.

[11]  M. Petter,et al.  Absence of Erythrocyte Sequestration and Lack of Multicopy Gene Family Expression in Plasmodium falciparum from a Splenectomized Malaria Patient , 2009, PloS one.

[12]  J. Daily,et al.  Plasmodium falciparum biology: analysis of in vitro versus in vivo growth conditions. , 2009, Trends in parasitology.

[13]  Zbynek Bozdech,et al.  Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates , 2009, PLoS pathogens.

[14]  Blaise T. F. Alako,et al.  Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors , 2009, PLoS pathogens.

[15]  Qi Fan,et al.  Characterization of PRMT1 from Plasmodium falciparum. , 2009, The Biochemical journal.

[16]  Blaise T. F. Alako,et al.  Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum , 2009, Proceedings of the National Academy of Sciences.

[17]  D. Conway,et al.  Statistical estimation of cell-cycle progression and lineage commitment in Plasmodium falciparum reveals a homogeneous pattern of transcription in ex vivo culture , 2009, Proceedings of the National Academy of Sciences.

[18]  A. Cowman,et al.  Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites , 2009, Nucleic acids research.

[19]  P. Baldacci,et al.  Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites , 2009, The Journal of experimental medicine.

[20]  Christopher J. Tonkin,et al.  Sir2 Paralogues Cooperate to Regulate Virulence Genes and Antigenic Variation in Plasmodium falciparum , 2009, PLoS biology.

[21]  S. Martínez-Calvillo,et al.  Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes , 2009, Nucleic acids research.

[22]  S. Ralph,et al.  Differential sub-nuclear localisation of repressive and activating histone methyl modifications in P. falciparum. , 2009, Microbes and infection.

[23]  R. Emes,et al.  Control of gene expression in Plasmodium falciparum - ten years on. , 2009, Molecular and biochemical parasitology.

[24]  Masao Yuda,et al.  Identification of a transcription factor in the mosquito‐invasive stage of malaria parasites , 2009, Molecular microbiology.

[25]  Jose-Juan Lopez-Rubio,et al.  Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. , 2009, Cell host & microbe.

[26]  A. Dritschilo,et al.  Novel Inhibitor of Plasmodium Histone Deacetylase That Cures P. berghei-Infected Mice , 2009, Antimicrobial Agents and Chemotherapy.

[27]  D. Fairlie,et al.  Targeting histone deacetylase inhibitors for anti-malarial therapy. , 2009, Current topics in medicinal chemistry.

[28]  Christian Epp,et al.  Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. , 2008, RNA.

[29]  Yongyuth Yuthavong,et al.  A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates , 2008, PLoS pathogens.

[30]  Alfred Cortés Switching Plasmodium falciparum genes on and off for erythrocyte invasion. , 2008, Trends in parasitology.

[31]  A. Scherf,et al.  Identification of a novel post-translational modification in Plasmodium falciparum: protein sumoylation in different cellular compartments , 2008, Cellular microbiology.

[32]  A. Sauve,et al.  Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. , 2008, Biochemistry.

[33]  Qi Fan,et al.  Histone lysine methyltransferases and demethylases in Plasmodium falciparum. , 2008, International journal for parasitology.

[34]  G. van Gemert,et al.  Temperature Shift and Host Cell Contact Up-Regulate Sporozoite Expression of Plasmodium falciparum Genes Involved in Hepatocyte Infection , 2008, PLoS pathogens.

[35]  Andrew R. Gehrke,et al.  Specific DNA-binding by Apicomplexan AP2 transcription factors , 2008, Proceedings of the National Academy of Sciences.

[36]  X. Su,et al.  Histone Acetyltransferase Inhibitor Anacardic Acid Causes Changes in Global Gene Expression during In Vitro Plasmodium falciparum Development , 2008, Eukaryotic Cell.

[37]  Amol V. Shivange,et al.  Nicotinamide inhibits Plasmodium falciparum Sir2 activity in vitro and parasite growth. , 2008, FEMS microbiology letters.

[38]  P. Nilsson,et al.  Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum , 2008, PloS one.

[39]  S. Kyes,et al.  Nuclear Non-coding RNAs Are Transcribed from the Centromeres of Plasmodium falciparum and Are Associated with Centromeric Chromatin* , 2008, Journal of Biological Chemistry.

[40]  D. Fairlie,et al.  Potent Antimalarial Activity of Histone Deacetylase Inhibitor Analogues , 2008, Antimicrobial Agents and Chemotherapy.

[41]  Xinxia Peng,et al.  A combined transcriptome and proteome survey of malaria parasite liver stages , 2008, Proceedings of the National Academy of Sciences.

[42]  A. Regev,et al.  Distinct physiological states of Plasmodium falciparum in malaria-infected patients , 2007, Nature.

[43]  Alisson M. Gontijo,et al.  5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites , 2007, Molecular microbiology.

[44]  M. Duraisingh,et al.  Plasmodium falciparum Sir2: an Unusual Sirtuin with Dual Histone Deacetylase and ADP-Ribosyltransferase Activity , 2007, Eukaryotic Cell.

[45]  P. Nilsson,et al.  Genome wide gene amplifications and deletions in Plasmodium falciparum. , 2007, Molecular and biochemical parasitology.

[46]  A. Ivens,et al.  Epigenetic Silencing of Plasmodium falciparum Genes Linked to Erythrocyte Invasion , 2007, PLoS pathogens.

[47]  M. Frank,et al.  Variable switching rates of malaria virulence genes are associated with chromosomal position , 2007, Molecular microbiology.

[48]  Krystyna A. Kelly,et al.  Epigenomic Modifications Predict Active Promoters and Gene Structure in Toxoplasma gondii , 2007, PLoS pathogens.

[49]  Jun Miao,et al.  PfGCN5-Mediated Histone H3 Acetylation Plays a Key Role in Gene Expression in Plasmodium falciparum , 2007, Eukaryotic Cell.

[50]  G. McVean,et al.  Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum , 2007, PLoS pathogens.

[51]  M. Gatton,et al.  Differential changes in Plasmodium falciparum var transcription during adaptation to culture. , 2007, The Journal of infectious diseases.

[52]  L. Aravind,et al.  Molecular Factors and Biochemical Pathways Induced by Febrile Temperature in Intraerythrocytic Plasmodium falciparum Parasites , 2007, Infection and Immunity.

[53]  Mats Wahlgren,et al.  Comparative transcriptomal analysis of isogenic Plasmodium falciparum clones of distinct antigenic and adhesive phenotypes. , 2007, Molecular and biochemical parasitology.

[54]  Thanat Chookajorn,et al.  Epigenetic memory at malaria virulence genes , 2007, Proceedings of the National Academy of Sciences.

[55]  M. Nunes,et al.  A novel protein kinase family in Plasmodium falciparum is differentially transcribed and secreted to various cellular compartments of the host cell , 2007, Molecular microbiology.

[56]  L. Cui,et al.  Cytotoxic Effect of Curcumin on Malaria Parasite Plasmodium falciparum: Inhibition of Histone Acetylation and Generation of Reactive Oxygen Species , 2006, Antimicrobial Agents and Chemotherapy.

[57]  Richard J. Challis,et al.  Differential var gene transcription in Plasmodium falciparum isolates from patients with cerebral malaria compared to hyperparasitaemia , 2006, Molecular and biochemical parasitology.

[58]  A. Naguleswaran,et al.  Histones and histone modifications in protozoan parasites , 2006, Cellular microbiology.

[59]  M. Duraisingh,et al.  Heterochromatin‐mediated control of virulence gene expression , 2006, Molecular microbiology.

[60]  P. Brey,et al.  Differential gene expression in the ookinete stage of the malaria parasite Plasmodium berghei. , 2006, Molecular and biochemical parasitology.

[61]  Neil Hall,et al.  Regulation of Sexual Development of Plasmodium by Translational Repression , 2006, Science.

[62]  T. Theander,et al.  Differential Expression of var Gene Groups Is Associated with Morbidity Caused by Plasmodium falciparum Infection in Tanzanian Children , 2006, Infection and Immunity.

[63]  L. Cui,et al.  The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. , 2006, Gene.

[64]  A. Cowman,et al.  Invasion of Red Blood Cells by Malaria Parasites , 2006, Cell.

[65]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[66]  Aaron T. Smith,et al.  Histone-Modifying Complexes Regulate Gene Expression Pertinent to the Differentiation of the Protozoan Parasite Toxoplasma gondii , 2005, Molecular and Cellular Biology.

[67]  Marie-Agnès Dillies,et al.  Transcriptome analysis of antigenic variation in Plasmodium falciparum - var silencing is not dependent on antisense RNA , 2005, Genome Biology.

[68]  Elisabetta Pizzi,et al.  Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. , 2005, Molecular and biochemical parasitology.

[69]  D. Carucci,et al.  Transcriptional analysis of in vivo Plasmodium yoelii liver stage gene expression. , 2005, Molecular and biochemical parasitology.

[70]  M. Madan Babu,et al.  Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains , 2005, Nucleic acids research.

[71]  M. Zupancic,et al.  Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI , 2005, Science.

[72]  Alisson M. Gontijo,et al.  Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites , 2005, Cell.

[73]  Manoj T. Duraisingh,et al.  Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum , 2005, Cell.

[74]  O. Mercereau‐Puijalon,et al.  A new Apicomplexa-specific protein kinase family : multiple members in Plasmodium falciparum, all with an export signature , 2005, BMC Genomics.

[75]  L. Cui,et al.  Characterization of PfPuf2, member of the Puf family RNA-binding proteins from the malaria parasite Plasmodium falciparum. , 2004, DNA and cell biology.

[76]  S. Sharp,et al.  Plasmodium falciparum Associated with Severe Childhood Malaria Preferentially Expresses PfEMP1 Encoded by Group A var Genes , 2004, The Journal of experimental medicine.

[77]  B. Tekwani,et al.  Antimalarial and Antileishmanial Activities of Aroyl-Pyrrolyl-Hydroxyamides, a New Class of Histone Deacetylase Inhibitors , 2004, Antimicrobial Agents and Chemotherapy.

[78]  L. Cui,et al.  Plasmodium falciparum Histone Acetyltransferase, a Yeast GCN5 Homologue Involved in Chromatin Remodeling , 2004, Eukaryotic Cell.

[79]  M. Galinski,et al.  Variant antigen expression in malaria infections: posttranscriptional gene silencing, virulence and severe pathology. , 2004, Molecular and biochemical parasitology.

[80]  S. Kappe,et al.  Differential transcriptome profiling identifies Plasmodium genes encoding pre‐erythrocytic stage‐specific proteins , 2004, Molecular microbiology.

[81]  T. McCutchan,et al.  The Effects of Glucose Concentration on the Reciprocal Regulation of rRNA Promoters in Plasmodium falciparum* , 2004, Journal of Biological Chemistry.

[82]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[83]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[84]  Thomas Lavstsen,et al.  Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A‐adhering Plasmodium falciparum involved in pregnancy‐associated malaria , 2003, Molecular microbiology.

[85]  M. Gatton,et al.  Switching rates of Plasmodium falciparum var genes: faster than we thought? , 2003, Trends in parasitology.

[86]  S. Herrera,et al.  Aotus monkeys: their great value for anti-malaria vaccines and drug testing. , 2002, International journal for parasitology.

[87]  Stuart M. Brown,et al.  Infectivity-associated Changes in the Transcriptional Repertoire of the Malaria Parasite Sporozoite Stage* , 2002, The Journal of Biological Chemistry.

[88]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[89]  Kamolrat Silamut,et al.  Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[90]  M. Gatton,et al.  High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  M. Wahlgren,et al.  Mosaic-like transcription of var genes in single Plasmodium falciparum parasites. , 2002, Molecular and biochemical parasitology.

[92]  A. Cowman,et al.  Transcription of multiple var genes by individual, trophozoite‐stage Plasmodium falciparum cells expressing a chondroitin sulphate A binding phenotype , 2002, Molecular microbiology.

[93]  Thomas E. Wellems,et al.  Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum , 2000, Nature.

[94]  H. Contamin,et al.  Plasmodium falciparumin the squirrel monkey (Saimiri sciureus): infection of non-splenectomised animals as a model for exploring clinical manifestations of malaria. , 2000, Microbes and infection.

[95]  D. Fairlie,et al.  Anti-malarial effect of histone deacetylation inhibitors and mammalian tumour cytodifferentiating agents. , 2000, International journal for parasitology.

[96]  A. Scherf,et al.  Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra‐erythrocytic development in Plasmodium falciparum , 1998, The EMBO journal.

[97]  Mats Wahlgren,et al.  Developmental selection of var gene expression in Plasmodium falciparum , 1998, Nature.

[98]  D M Schmatz,et al.  Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[99]  C. Newbold,et al.  Protection, pathogenesis and phenotypic plasticity in Plasmodium falciparum malaria. , 1993, Parasitology today.

[100]  H. Webster,et al.  Malaria in splenectomized patients: report of four cases and review. , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[101]  L. Miller,et al.  Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[102]  J. Barnwell,et al.  Splenic requirement for antigenic variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium knowlesi malaria , 1983, Infection and immunity.

[103]  J. Barnwell,et al.  Altered expression of Plasmodium knowlesi variant antigen on the erythrocyte membrane in splenectomized rhesus monkeys. , 1982, Journal of immunology.

[104]  Jeffrey H. Chuang,et al.  The effect of Plasmodium falciparum Sir2a histone deacetylase on clonal and longitudinal variation in expression of the var family of virulence genes. , 2010, International journal for parasitology.

[105]  L. Aravind,et al.  Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. , 2008, International journal for parasitology.

[106]  X. Su,et al.  Ambient glucose concentration and gene expression in Plasmodium falciparum. , 2004, Molecular and biochemical parasitology.

[107]  A. Cowman,et al.  Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations , 2003, Nature Medicine.

[108]  J. Barnwell,et al.  Influence of the spleen on the expression of surface antigens on parasitized erythrocytes. , 1983, Ciba Foundation symposium.

[109]  I. N. Brown,et al.  Immunity to malaria: the antibody response to antigenic variation by Plasmodium knowlesi. , 1968, Immunology.