Substrate-specific structural rearrangements of human Dicer

Dicer has a central role in RNA-interference pathways by cleaving double-stranded RNAs (dsRNAs) to produce small regulatory RNAs. Human Dicer can process long double-stranded and hairpin precursor RNAs to yield short interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. Previous studies have shown that pre-miRNAs are cleaved more rapidly than pre-siRNAs in vitro and are the predominant natural Dicer substrates. We have used EM and single-particle analysis of Dicer–RNA complexes to gain insight into the structural basis for human Dicer's substrate preference. Our studies show that Dicer traps pre-siRNAs in a nonproductive conformation, whereas interactions of Dicer with pre-miRNAs and dsRNA-binding proteins induce structural changes in the enzyme that enable productive substrate recognition in the central catalytic channel. These findings implicate RNA structure and cofactors in determining substrate recognition and processing efficiency by human Dicer.

[1]  I. MacRae,et al.  An unusual case of pseudo-merohedral twinning in orthorhombic crystals of Dicer. , 2007, Acta crystallographica. Section D, Biological crystallography.

[2]  Andrew S. Kohlway,et al.  Structural Insights into RNA Recognition by RIG-I , 2011, Cell.

[3]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[4]  Hervé Seitz,et al.  Recognition of the pre-miRNA structure by Drosophila Dicer-1 , 2011, Nature Structural &Molecular Biology.

[5]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[6]  G. Herman,et al.  Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization , 2007, Nature Methods.

[7]  Toshihiko Ogura,et al.  Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking. , 2003, Journal of structural biology.

[8]  Sumio Sugano,et al.  Curved EFC/F-BAR-Domain Dimers Are Joined End to End into a Filament for Membrane Invagination in Endocytosis , 2007, Cell.

[9]  Jennifer A. Doudna,et al.  Structures of the RNA-guided surveillance complex from a bacterial immune system , 2011, Nature.

[10]  Christopher Irving,et al.  A toolbox for ab initio 3-D reconstructions in single-particle electron microscopy. , 2010, Journal of structural biology.

[11]  Thomas D. Goddard,et al.  Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. , 2010, Journal of structural biology.

[12]  Yue Zhang,et al.  The Loop Position of shRNAs and Pre-miRNAs Is Critical for the Accuracy of Dicer Processing In Vivo , 2012, Cell.

[13]  Roberto Marabini,et al.  Maximum-likelihood multi-reference refinement for electron microscopy images. , 2005, Journal of molecular biology.

[14]  Wah Chiu,et al.  Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. , 2010, Structure.

[15]  Noah C Welker,et al.  Dicer's helicase domain discriminates dsRNA termini to promote an altered reaction mode. , 2011, Molecular cell.

[16]  J. Doudna,et al.  TRBP alters human precursor microRNA processing in vitro. , 2012, RNA.

[17]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[18]  Jennifer A. Doudna,et al.  In vitro reconstitution of the human RISC-loading complex , 2008, Proceedings of the National Academy of Sciences.

[19]  Christopher Irving,et al.  Appion: an integrated, database-driven pipeline to facilitate EM image processing. , 2009, Journal of structural biology.

[20]  Phillip D Zamore,et al.  Perspective: machines for RNAi. , 2005, Genes & development.

[21]  Angela N. Brooks,et al.  Structural Basis for Double-Stranded RNA Processing by Dicer , 2006, Science.

[22]  Phillip D Zamore,et al.  Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. , 2011, Molecular cell.

[23]  J. Doudna,et al.  siRNA repositioning for guide strand selection by human Dicer complexes. , 2011, Molecular cell.

[24]  W Chiu,et al.  EMAN: semiautomated software for high-resolution single-particle reconstructions. , 1999, Journal of structural biology.

[25]  G. Hannon,et al.  RNase III enzymes and the initiation of gene silencing , 2004, Nature Structural &Molecular Biology.

[26]  Michael A. Cianfrocco,et al.  Human TFIID Binds to Core Promoter DNA in a Reorganized Structural State , 2013, Cell.

[27]  Jennifer A. Doudna,et al.  Structural insights into RNA Processing by the Human RISC-Loading Complex , 2009, Nature Structural &Molecular Biology.

[28]  Pick-Wei Lau,et al.  Structure of the human Dicer-TRBP complex by electron microscopy. , 2009, Structure.

[29]  K. Nagayama,et al.  Transmission electron microscopy with Zernike phase plate. , 2001, Ultramicroscopy.

[30]  J. Cáceres,et al.  Antagonistic role of hnRNP A1 and KSRP in the regulation of Let-7a biogenesis , 2010, Nature Structural &Molecular Biology.

[31]  R. Gregory,et al.  Molecular Basis for Interaction of let-7 MicroRNAs with Lin28 , 2011, Cell.

[32]  U. Heinemann,et al.  The Lin28 cold-shock domain remodels pre-let-7 microRNA , 2012, Nucleic acids research.

[33]  G. Hannon,et al.  A dicer-independent miRNA biogenesis pathway that requires Ago catalysis , 2010, Nature.

[34]  S. Burgess,et al.  AAA+ Ring and Linker Swing Mechanism in the Dynein Motor , 2009, Cell.

[35]  K. Nagayama,et al.  Single particle analysis based on Zernike phase contrast transmission electron microscopy. , 2008, Journal of structural biology.

[36]  M Radermacher,et al.  DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. , 2009, Journal of structural biology.

[37]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[38]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[39]  Robert M Glaeser,et al.  Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. , 2009, Ultramicroscopy.

[40]  Hyeshik Chang,et al.  Dicer recognizes the 5′ end of RNA for efficient and accurate processing , 2011, Nature.

[41]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[42]  M van Heel,et al.  A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.

[43]  J. Frank,et al.  Three‐dimensional reconstruction from a single‐exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli , 1987, Journal of microscopy.

[44]  M. Tominaga,et al.  A 3.5-nm Structure of Rat TRPV4 Cation Channel Revealed by Zernike Phase-contrast Cryoelectron Microscopy* , 2009, Journal of Biological Chemistry.

[45]  Pick-Wei Lau,et al.  The Molecular Architecture of Human Dicer , 2012, Nature Structural &Molecular Biology.

[46]  José María Carazo,et al.  Image processing for electron microscopy single-particle analysis using XMIPP , 2008, Nature Protocols.

[47]  Sangdun Choi,et al.  Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy , 2005, Nature Biotechnology.

[48]  W. Filipowicz,et al.  Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP , 2002, The EMBO journal.

[49]  Jack F Kirsch,et al.  Autoinhibition of human dicer by its internal helicase domain. , 2008, Journal of molecular biology.

[50]  Chao Yang,et al.  SPARX, a new environment for Cryo-EM image processing. , 2007, Journal of structural biology.

[51]  K. Nagayama,et al.  Transfer doublet and an elaborated phase plate holder for 120 kV electron-phase microscope. , 2005, Journal of electron microscopy.

[52]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[53]  I. MacRae,et al.  Structural determinants of RNA recognition and cleavage by Dicer , 2007, Nature Structural &Molecular Biology.

[54]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[55]  D. Purcell,et al.  Bmc Molecular Biology Characterization of the Trbp Domain Required for Dicer Interaction and Function in Rna Interference , 2022 .

[56]  J. Doudna,et al.  Substrate-specific kinetics of Dicer-catalyzed RNA processing. , 2010, Journal of molecular biology.

[57]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[58]  Radostin Danev,et al.  Zernike phase contrast electron microscopy of ice-embedded influenza A virus. , 2008, Journal of structural biology.

[59]  Kaihong Zhou,et al.  Coordinated activities of human dicer domains in regulatory RNA processing. , 2012, Journal of molecular biology.

[60]  J M Carazo,et al.  XMIPP: a new generation of an open-source image processing package for electron microscopy. , 2004, Journal of structural biology.

[61]  Gene W Yeo,et al.  RNA sequence analysis defines Dicer's role in mouse embryonic stem cells , 2007, Proceedings of the National Academy of Sciences.

[62]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[63]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.