Nanomaterials for Antibacterial Textiles

The growth of harmful microorganisms on textiles results in a range of undesirable effects and negative impacts on the textile user and the textile material. Hence, there is an ever-growing need to develop new, effective, durable, and eco-friendly antibacterial agents to enable the production of textiles with improved or novel antibacterial functionalities. Recently, utilization of a wide range of nano-engineered antibacterial materials has gained worldwide attention and applications taking into account ever-growing consumer demands and environmental concerns. This chapter first discusses classification of textile materials and the nano-antibacterial agents, synthetic routes (especially green approaches), application methods, and mode of interaction and fixation. The chapter then gives an overview of the proposed antibacterial mechanisms and the commonly used antibacterial activity tests against Escherichia coli and Staphylococcus aureus bacteria. Finally, potential risks, safety considerations, and future trends are also briefly discussed.

[1]  Yu-Cheng Chang,et al.  Formation of silver nanorods by microwave heating in the presence of gold seeds , 2005 .

[2]  Yu Chuan Liu,et al.  Size-Controlled Synthesis of Gold Nanoparticles from Bulk Gold Substrates by Sonoelectrochemical Methods , 2004 .

[3]  Gang Sun,et al.  Durable and regenerable antimicrobial textiles: Improving efficacy and durability of biocidal functions , 2004 .

[4]  Yuyu Sun,et al.  Antimicrobial cationic dyes: part 1: synthesis and characterization , 2003 .

[5]  M. Montazer,et al.  Past, present and future prospects of cotton cross-linking: New insight into nano particles , 2012 .

[6]  Gang Sun,et al.  Durable Antimicrobial Finishing of Nylon Fabrics with Acid Dyes and a Quaternary Ammonium Salt , 2001 .

[7]  Rajinder K. Gupta,et al.  Nanotechnology and Potential of Microorganisms , 2005, Critical reviews in biotechnology.

[8]  M. Darroudi,et al.  Green synthesis and characterization of gelatin-based and sugar-reduced silver nanoparticles , 2011, International journal of nanomedicine.

[9]  A. Bhattacharyya,et al.  Nanotechnology – a new route to high-performance functional textiles , 2011 .

[10]  M. B. Moghadam,et al.  Influence of sericin/TiO₂ nanocomposite on cotton fabric: part 1. Enhanced antibacterial effect. , 2013, Carbohydrate polymers.

[11]  N. Ibrahim,et al.  Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex , 2011 .

[12]  R. P. Nachane,et al.  Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus , 2007 .

[13]  M. Ashokkumar,et al.  Microbial synthesis of silver nanoparticles by Bacillus sp. , 2009 .

[14]  Gregory Morose,et al.  The 5 principles of “Design for Safer Nanotechnology” , 2010 .

[15]  M. Palaniswamy,et al.  Synthesis of Metal Oxide Nano Particles by Streptomyces Sp for Development of Antimicrobial Textiles , 2010 .

[16]  James E Hutchison,et al.  Toward greener nanosynthesis. , 2007, Chemical reviews.

[17]  N. Carneiro,et al.  Polymer Nanocomposites for Multifunctional Finishing of Textiles - a Review , 2010 .

[18]  Stuart Peters,et al.  Nanotechnology innovation for future development in the textile industry , 2012 .

[19]  C. E. Pellew Dyes And Dyeing , 2022 .

[20]  Hossam E. Emam,et al.  Treatments to impart antimicrobial activity to clothing and household cellulosic-textiles – why “Nano”-silver? , 2013 .

[21]  Dong-Hwang Chen,et al.  A facile and completely green route for synthesizing gold nanoparticles by the use of drink additives , 2007 .

[22]  M. Joshi,et al.  Antibacterial finishing of polyester/cotton blend fabrics using neem (Azadirachta indica): A natural bioactive agent , 2007 .

[23]  M. Montazer,et al.  Sodium hypophosphite and nano TiO2 inorganic catalysts along with citric acid on textile producing multi-functional properties , 2012 .

[24]  Egon Matijević,et al.  Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. , 2003, Journal of colloid and interface science.

[25]  Shiyuan Ding,et al.  Preparation of silver nanoparticles by chemical reduction method , 2005 .

[26]  N. Ibrahim,et al.  Enhancing the UV-protection and Antibacterial Properties of Polyamide-6 Fabric by Natural Dyeing , 2013 .

[27]  A. A. Almetwally,et al.  Functional finishes of stretch cotton fabrics. , 2013, Carbohydrate polymers.

[28]  R. P. Nachane,et al.  A novel one-pot 'green' synthesis of stable silver nanoparticles using soluble starch. , 2006, Carbohydrate research.

[29]  Yuyu Sun,et al.  Novel regenerable N-halamine polymeric biocides. III. Grafting hydantoin-containing monomers onto synthetic fabrics , 2001 .

[30]  John A Taylor,et al.  Effect of reactive dyes upon the uptake and antibacterial action of poly(hexamethylene biguanide) on cotton. Part 1: Effect of bis(monochlorotriazinyl) dyes , 2004 .

[31]  M. Skrifvars,et al.  Antibacterial activity of PA6/ZnO nanocomposite fibers , 2011 .

[32]  Ning Gu,et al.  Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata , 2007 .

[33]  C. Yeh,et al.  Sonochemical Synthesis of Well-Dispersed Gold Nanoparticles at the Ice Temperature , 2003 .

[34]  N. Ibrahim,et al.  UV‐protecting and antibacterial finishing of cotton knits , 2009 .

[35]  E. Hoek,et al.  A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment , 2010 .

[36]  Jie Fu,et al.  Completely "green" synthesis and stabilization of metal nanoparticles. , 2003, Journal of the American Chemical Society.

[37]  R. Purwar,et al.  Recent developments in antimicrobial finishing of textiles: A review , 2004 .

[38]  A. Kulkarni,et al.  Synthesis of TiO2 nanoparticles using microorganisms. , 2009, Colloids and surfaces. B, Biointerfaces.

[39]  Xiaoping Zhou,et al.  Formation of ZnO hexagonal micro-pyramids: a successful control of the exposed polar surfaces with the assistance of an ionic liquid. , 2005, Chemical communications.

[40]  Z. Zhang,et al.  Antibacterial Properties of Cotton Fabrics Treated with Chitosan , 2003 .

[41]  A. Choudhury Dyeing of synthetic fibres , 2011 .

[42]  Xiurong Yang,et al.  Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. , 2004, Carbohydrate research.

[43]  Han-Joo Lee,et al.  Antibacterial effect of nanosized silver colloidal solution on textile fabrics , 2003 .

[44]  Absar Ahmad,et al.  Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. , 2004, Journal of colloid and interface science.

[45]  K.,et al.  Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via "Green Approach" , 2010 .

[46]  V. Sharma,et al.  Silver nanoparticles: green synthesis and their antimicrobial activities. , 2009, Advances in colloid and interface science.

[47]  M. Abdel-Aziz,et al.  Biosynthesized Silver Nanoparticles for Antibacterial Treatment of Cellulosic Fabrics Using O2-Plasma , 2014 .

[48]  Rajender S. Varma,et al.  Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves , 2009 .

[49]  D. Lewis The colouration of wool , 2011 .

[50]  S. Zinjarde,et al.  Banana peel extract mediated novel route for the synthesis of silver nanoparticles , 2010 .

[51]  Abdul Halim Abdullah,et al.  Effect of Accelerator in Green Synthesis of Silver Nanoparticles , 2010, International journal of molecular sciences.

[52]  S. Bajpai,et al.  In Situ Formation of Silver Nanoparticles within Chitosan-attached Cotton Fabric for Antibacterial Property , 2011 .

[53]  G. Guebitz,et al.  Ultrasound radiation as a "throwing stones" technique for the production of antibacterial nanocomposite textiles. , 2010, ACS applied materials & interfaces.

[54]  N. Ibrahim,et al.  Smart options for simultaneous functionalization and pigment coloration of cellulosic/wool blends. , 2013, Carbohydrate polymers.

[55]  Hong Yan,et al.  Green synthesis and characteristic of core-shell structure silver/starch nanoparticles , 2011 .

[56]  E. Somsook,et al.  Starch vermicelli template-assisted synthesis of size/shape-controlled nanoparticles , 2009 .

[57]  A. Murugan,et al.  Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method , 2006 .

[58]  S. Hudson,et al.  Review of Chitosan and Its Derivatives as Antimicrobial Agents and Their Uses as Textile Chemicals , 2003 .

[59]  M. Antonietti,et al.  Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. , 2004, Angewandte Chemie.

[60]  N. A. Ibrahim,et al.  Finishing of Cotton Fabrics with Hyperbranched Poly (ester-amine) to Enhance Their Antibacterial Properties and UV Protection , 2010 .

[61]  Roberto Cingolani,et al.  Nanotechnology tools for antibacterial materials. , 2013, Nanomedicine.

[62]  M. Yacamán,et al.  The bactericidal effect of silver nanoparticles , 2005, Nanotechnology.

[63]  G. Compagnini,et al.  Production of gold nanoparticles by laser ablation in liquid alkanes , 2003 .

[64]  N. A. Ibahim,et al.  Functionalization of linen/cotton pigment prints using inorganic nano structure materials. , 2013, Carbohydrate polymers.

[65]  Sandy Black,et al.  The role of nanotechnology in sustainable textiles , 2009 .

[66]  S. Komarneni,et al.  Microwave-hydrothermal process for the synthesis of rutile , 2005 .

[67]  J. Maillard Bacterial target sites for biocide action , 2002, Journal of applied microbiology.

[68]  A. Amr,et al.  Poly(acrylic acid)/poly(ethylene glycol) adduct for attaining multifunctional cellulosic fabrics. , 2012, Carbohydrate polymers.

[69]  N. Ibrahim,et al.  Functionalization of cellulose-containing fabrics by plasma and subsequent metal salt treatments. , 2012, Carbohydrate polymers.

[70]  N. Ibrahim,et al.  A smart approach to add antibacterial functionality to cellulosic pigment prints. , 2013, Carbohydrate polymers.

[71]  Yuan Gao,et al.  Recent Advances in Antimicrobial Treatments of Textiles , 2008 .

[72]  D. Philip,et al.  Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[73]  I. Holme Innovative technologies for high performance textiles , 2007 .

[74]  H. V. Rasika Dias,et al.  The greener synthesis of nanoparticles. , 2013, Trends in biotechnology.

[75]  B. Mahltig,et al.  Antimicrobial Sol–Gel Coatings , 2004 .

[76]  A. El-Shafei,et al.  Antimicrobial activity of cotton fabrics containing immobilized enzymes , 2007 .

[77]  Stabilized nanosilver loaded nylon knitted fabric using BTCA without yellowing , 2012 .

[78]  M. Sastry,et al.  Extracellular Synthesis of Crystalline Silver Nanoparticles and Molecular Evidence of Silver Resistance from Morganella sp.: Towards Understanding Biochemical Synthesis Mechanism , 2008, Chembiochem : a European journal of chemical biology.

[79]  R. Murray,et al.  Sites of metal deposition in the cell wall of Bacillus subtilis , 1980, Journal of bacteriology.

[80]  J. Puišo,et al.  Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution , 2006 .

[81]  Xin Zhang,et al.  Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate , 2008 .

[82]  Eric W McFarland,et al.  Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid-liquid interfaces. , 2002, Journal of the American Chemical Society.

[83]  Sudhakar R. Sainkar,et al.  BIOREDUCTION OF AUCL4− IONS BY THE FUNGUS, VERTICILLIUM SP. AND SURFACE TRAPPING OF THE GOLD NANOPARTICLES FORMED , 2001 .

[84]  N. Perkas,et al.  A one-step process for the antimicrobial finishing of textiles with crystalline TiO2 nanoparticles. , 2012, Chemistry.

[85]  M. Gouda,et al.  Multifunctional Anionic Cotton Dyeings , 2010 .

[86]  K. Narayanan,et al.  Biological synthesis of metal nanoparticles by microbes. , 2010, Advances in colloid and interface science.

[87]  Asim Kumar Roy Choudhury,et al.  Green chemistry and the textile industry , 2013 .

[88]  L. Juang,et al.  Electrochemical methods for the preparation of gold-coated TiO2 nanoparticles with variable coverages. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[89]  B. Mahltig,et al.  Functionalisation of textiles by inorganic sol–gel coatings , 2005 .

[90]  Chao-Ming Shih,et al.  Preparation of silver nanoparticles using chitosan suspensions , 2008 .

[91]  Barbara Simončič,et al.  Structures of Novel Antimicrobial Agents for Textiles - A Review , 2010 .

[92]  M. Radetić Functionalization of textile materials with silver nanoparticles , 2012, Journal of Materials Science.

[93]  N. Ibrahim,et al.  Innovative multi-functional treatments of ligno-cellulosic jute fabric , 2010 .

[94]  M. Mutlu,et al.  Antimicrobial, UV-protective and self-cleaning properties of cotton fabrics coated by dip-coating and solvothermal coating methods , 2011 .

[95]  M. Darroudi,et al.  Preparation and characterization of gelatin mediated silver nanoparticles by laser ablation , 2011 .

[96]  R. Kumar,et al.  Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, Trichothecium sp. , 2005 .

[97]  S. Yeo,et al.  Preparation of nanocomposite fibers for permanent antibacterial effect , 2003 .

[98]  M. Sundrarajan,et al.  Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. , 2012, International journal of pharmaceutics.

[99]  S. Hudson,et al.  Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish , 2004 .

[100]  S. Bashir,et al.  Green synthesis and characterization of polymer-stabilized silver nanoparticles. , 2009, Colloids and surfaces. B, Biointerfaces.

[101]  C. Kan,et al.  Developments in functional finishing of cotton fibres – wrinkle-resistant, flame-retardant and antimicrobial treatments , 2012 .

[102]  Majid Montazer,et al.  Enhanced Self‐cleaning, Antibacterial and UV Protection Properties of Nano TiO2 Treated Textile through Enzymatic Pretreatment , 2011, Photochemistry and photobiology.

[103]  J. Koh Dyeing of cellulosic fibres , 2011 .

[104]  M. Rai,et al.  Silver nanoparticles as a new generation of antimicrobials. , 2009, Biotechnology advances.

[105]  Yehia E. El Mogahzy,et al.  An integrated approach to analyzing the nature of multicomponent fiber blending. Part I: Analytical aspects , 2004 .

[106]  K. Acharya,et al.  Synthesis of methylcellulose-silver nanocomposite and investigation of mechanical and antimicrobial properties. , 2012, Carbohydrate polymers.

[107]  Mayur Dhaygude,et al.  Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex , 2012 .

[108]  Yu-Cheng Chang,et al.  Microwave Heating for the Preparation of Nanometer Gold Particles , 2003 .

[109]  R. Farag,et al.  An Integrated Approach to Analyzing the Nature of Multicomponent Fiber Blending , 2004 .

[110]  Jun‐Jie Zhu,et al.  Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake. , 2009, Analytical chemistry.

[111]  H. Ibrahim,et al.  Multifunctional finishing of cellulosic/polyester blended fabrics. , 2013, Carbohydrate polymers.

[112]  A. A. Aly,et al.  Enhancing the Antibacterial Properties of Cotton Fabric , 2008 .

[113]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .

[114]  Zhigang Hu,et al.  Nanocomposite of chitosan and silver oxide and its antibacterial property , 2008 .

[115]  E. Çeli̇k,et al.  ANTIMICROBIAL ACTIVITY OF COLLOIDAL SILVER NANOPARTICLES PREPARED BY SOL-GEL METHOD , 2011 .

[116]  Meng Zhang,et al.  Microwave-assisted rapid facile "Green" synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties , 2008 .

[117]  N. Ibrahim,et al.  Surface modification and smart functionalization of polyester-containing fabrics , 2013 .

[118]  H. Girault,et al.  Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. , 2002, Chemical communications.

[119]  M. Montazer,et al.  A new method to stabilize nanoparticles on textile surfaces , 2009 .

[120]  Q. Xue,et al.  Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid , 2011 .

[121]  B. D. Kalyon,et al.  Antibacterial efficacy of triclosan-incorporated polymers. , 2001, American journal of infection control.

[122]  S. Ghosh,et al.  General method of synthesis for metal nanoparticles , 2004 .

[123]  Anjali Pal,et al.  Preparation of nanosized gold particles in a biopolymer using UV photoactivation. , 2005, Journal of colloid and interface science.

[124]  T. C. Chuang,et al.  Synthesis and Characterization of Gold/Polypyrrole Core−Shell Nanocomposites and Elemental Gold Nanoparticles Based on the Gold-Containing Nanocomplexes Prepared by Electrochemical Methods in Aqueous Solutions , 2003 .

[125]  Majid Montazer,et al.  Functionality of nano titanium dioxide on textiles with future aspects: focus on wool , 2011 .

[126]  Milan Kolar,et al.  Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. , 2006, The journal of physical chemistry. B.

[127]  Georg M. Guebitz,et al.  CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity , 2009 .

[128]  David Hui,et al.  Modern Applications of Nanotechnology in Textiles , 2008 .

[129]  Gang Sun,et al.  Antimicrobial finishing of wool fabrics with quaternary aminopyridinium salts , 2007 .

[130]  N. Ibrahim,et al.  New Approach for Improving Antibacterial Functions of Cotton Fabric , 2008 .

[131]  Mohammad Shahid,et al.  Recent advancements in natural dye applications: a review , 2013 .

[132]  N. Ibrahim,et al.  A novel approach for adding smart functionalities to cellulosic fabrics. , 2012, Carbohydrate polymers.

[133]  Seung Goo Lee,et al.  Imparting durable antimicrobial properties to cotton fabrics using quaternary ammonium salts through 4-aminobenzenesulfonic acid–chloro–triazine adduct , 2006 .

[134]  M. Ahamed,et al.  Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles , 2011 .

[135]  H. Goesmann,et al.  Nanoparticulate functional materials. , 2010, Angewandte Chemie.

[136]  C. B. Roberts,et al.  Synthesis and extraction of beta-D-glucose-stabilized Au nanoparticles processed into low-defect, wide-area thin films and ordered arrays using CO2-expanded liquids. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[137]  U. Cho,et al.  Antimicrobial functions for synthetic fibers: recent developments , 2005 .

[138]  Majid Darroudi,et al.  Synthesis and characterization of ZnO nanoparticles prepared in gelatin media , 2011 .

[139]  Jong-Ho Cha,et al.  Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids , 2006 .

[140]  Majid Montazer,et al.  A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. , 2010, Colloids and surfaces. B, Biointerfaces.

[141]  G. Sangeetha,et al.  Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties , 2011 .

[142]  N. Ibrahim,et al.  Combined antimicrobial finishing and pigment printing of cotton/polyester blends. , 2013, Carbohydrate polymers.

[143]  Jun Chen,et al.  Safety and Health Assessment of Manufactured Nanoparticles in Nano-Coated Textile Products , 2011 .

[144]  Marija Gorjanc,et al.  Functionalization of Polyester Fabric by Ar/N2 Plasma and Silver , 2010 .

[145]  M. Gulrajani,et al.  Emerging techniques for functional finishing of textiles , 2011 .

[146]  Bernd Nowack,et al.  Comparative evaluation of antimicrobials for textile applications. , 2013, Environment international.

[147]  R. Mandal,et al.  Role of pH in the green synthesis of silver nanoparticles , 2009 .

[148]  M. Gunasekaran,et al.  Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. , 2011, Colloids and surfaces. B, Biointerfaces.

[149]  M. Yazdanshenas,et al.  Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity , 2009 .

[150]  N. Vigneshwaran,et al.  Functional finishing of cotton fabrics using zinc oxide–soluble starch nanocomposites , 2006 .

[151]  Dirk Höfer Antimicrobial textiles - evaluation of their effectiveness and safety. , 2006, Current problems in dermatology.