Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method
暂无分享,去创建一个
[1] Endre Süli,et al. Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity , 1996 .
[2] Laurent Gosse,et al. Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..
[3] E. Tadmor. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations , 1991 .
[4] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[5] Alexander Kurganov,et al. A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .
[6] D. Kröner,et al. Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions , 1995 .
[7] R. Eymard,et al. Limit boundary conditions for finite volume approximations of some physical problems , 2003 .
[8] José Carrillo Menéndez. Entropy solutions for nonlinear degenerate problems , 1999 .
[9] Julien Vovelle,et al. Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains , 2002, Numerische Mathematik.
[10] M. Vignal. Schemas volumes finis pour des équations elliptiques ou hyperboliques avec conditions aux limites, convergence et estimations d'erreur , 1997 .
[11] M. Ohlberger,et al. A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations , 2001, Numerische Mathematik.
[12] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[13] J. Nédélec,et al. First order quasilinear equations with boundary conditions , 1979 .
[14] Bernardo Cockburn,et al. Convergence of the finite volume method for multidimensional conservation laws , 1995 .
[15] Tao Tang,et al. Error Estimates of Approximate Solutions for Nonlinear Scalar Conservation Laws , 2001 .
[16] Claes Johnson,et al. Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .
[17] J. Carrillo. Entropy Solutions for Nonlinear Degenerate Problems , 1999 .
[18] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[19] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[20] J. Vovelle,et al. An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions , 2004 .
[21] Anders Szepessy,et al. Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .
[22] J. Vovelle,et al. A Kinetic Formulation for Multidimensional Scalar Conservation Laws with Boundary Conditions and Applications , 2004, SIAM J. Math. Anal..
[23] Claire Chainais-Hillairet,et al. NUMERICAL BOUNDARY LAYERS FOR HYPERBOLIC SYSTEMS IN 1-D , 2001 .
[24] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[25] R. Eymard,et al. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .
[26] Raimund Bürger,et al. The initial-boundary value problem for a scalar conservation law , 1999 .
[27] Jean-Paul Vila,et al. Numerical viscosity and convergence of finite volume methods for conservation laws with boundary conditions , 1995 .
[28] Endre Süli,et al. A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.
[29] Claire Chainais-Hillairet,et al. Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate , 1999 .
[30] Mario Ohlberger,et al. Adaptive Second Order Central Schemes on Unstructured Staggered Grids , 2003 .
[31] Mario Ohlberger. A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .