Physical properties of the organic aerosols and clouds on Titan

Titan’s haze is optically thick in the visible, with an optical depth at 0:5 m of about three. The haze varies with latitude in a seasonal cycle and has a detached upper layer. Microphysical models, photochemical models, and laboratory simulations all imply that the production rate of the haze is in the range of 0:5–2 × 10−14 g cm−2 s−1. Given the rate of sedimentation, the total mass loading is about 250 mg m−2. The transparency of the haze is high for wavelengths above 1 m because the haze material becomes almost purely scattering and the optical depth decreases with increasing wavelength. The particles in the main haze deck are probably fractal in structure with an equivalent volume radius of 0:2 m. The haze material is organic and, if similar to laboratory tholin, has a C=N ratio in the range of 2–4 and a C=H ratio of about unity. The haze signi cantly a ects the thermal balance of Titan, causing an antigreenhouse e ect that cools the surface by 9 K. Titan’s faintly banded appearance suggests strong zonal winds in the lower stratosphere. Condensate clouds of ethane or methane, if present, are thin, patchy, or transient. Stratospheric clouds of condensed nitriles and (possibly) hydrocarbons appear to be associated with, though not contained entirely in, the polar shadow, suggesting abundances may vary with the season. Precipitating condensate particles from the stratosphere probably act as nucleating centers for the formation and rapid growth of methane ice particles in the troposphere, where the gas phase appears to be highly supersaturated. Once formed, fallout times for these hailstones are ∼ 2 h or less. Melting, and possible subsequent fragmentation of methane raindrops should occur at ∼ 12 km and below. Almost complete evaporation should occur just above the surface. A thin residue of ethane-enriched fog particles would then slowly settle to the surface, steadily modifying an existing surface or subsurface residue of liquid hydrocarbons. The optical properties of the haze in the 1 to 3 m spectral region and the implications for the visibility of the surface are probably the most pressing current research questions. Other key questions include the nature of the high altitude detached haze layer, altitude and seasonal changes in composition of the haze, the role of haze particles as condensation nuclei for clouds, and the nature of any condensate clouds. Published by Elsevier Science Ltd.

[1]  J. Pollack,et al.  Size estimates of Titan's aerosols based on Voyager high-phase-angle images , 1983 .

[2]  C P McKay,et al.  Photochemical modeling of Titan's atmosphere , 1995, Icarus.

[3]  R. Botet,et al.  Semi-empirical model of absorption and scattering by isotropic fractal aggregates of spheres , 1999 .

[4]  E. Gendron,et al.  Spatially Resolved Images of Titan by Means of Adaptive Optics , 1997 .

[5]  Robert A. West,et al.  Evidence for aggregate particles in the atmospheres of Titan and Jupiter , 1991 .

[6]  R. Samuelson,et al.  Steady-state model for methane condensation in Titan's troposphere , 1997 .

[7]  R. E. Danielson,et al.  An inversion in the atmosphere of Titan , 1973 .

[8]  C. McKay,et al.  Methane rain on Titan , 1988 .

[9]  E. Chassefière,et al.  Laboratory simulations of Titan's atmosphere: organic gases and aerosols. , 1995, Planetary and space science.

[10]  E. Karkoschka,et al.  Latitudinal Variation of Aerosol Sizes Inferred from Titan's Shadow , 1997 .

[11]  J. Lunine,et al.  Ethane Ocean on Titan , 1983, Science.

[12]  Makiko Sato,et al.  Voyager 2 photopolarimeter observations of Titan , 1983 .

[13]  L. Trafton The Bulk Composition of Titan's Atmosphere , 1972 .

[14]  Christopher P. McKay,et al.  Titan's Surface: Composition and Variability from the Near-Infrared Albedo , 1994 .

[15]  M. Lemmon,et al.  Seasonal Change on Titan Observed with the Hubble Space Telescope WFPC-2 , 1999 .

[16]  E. Lellouch,et al.  Titan's atmospheric haze: the case for HCN incorporation , 1999 .

[17]  C. Sagan,et al.  The tide in the seas of Titan , 1982, Nature.

[18]  R. Botet,et al.  Titan's Geometric Albedo: Role of the Fractal Structure of the Aerosols , 1995 .

[19]  A. Borysow,et al.  Far infrared CIA spectra of N2-CH4 pairs for modeling of Titan's atmosphere , 1993 .

[20]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[21]  E. Karkoschka Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD–Spectrophotometry , 1998 .

[22]  Y. Yung,et al.  An update of nitrile photochemistry on Titan. , 1987, Icarus.

[23]  L. Guez,et al.  Importance of Phase Changes in Titan's Lower Atmosphere. Tools for the Study of Nucleation , 1997 .

[24]  E. Lellouch,et al.  Titan's hypothesized ocean properties: The influence of surface temperature and atmospheric composition uncertainties , 1989 .

[25]  T. Murdock,et al.  Infrared photometry of Saturn, Titan, and the Rings , 1971 .

[26]  Christopher P. McKay,et al.  Elemental composition, solubility, and optical properties of Titan's organic haze , 1996 .

[27]  E. Lau,et al.  Titan's aerosols I. Laboratory investigations of shapes, size distributions, and aggregation of particles produced by UV photolysis of model Titan atmospheres , 1992 .

[28]  R. Khanna,et al.  Vibrational infrared and raman spectra of dicyanoacetylene , 1987 .

[29]  D. T. Thompson,et al.  A relationship between solar activity and planetary albedos , 1979, Nature.

[30]  H. Peter White,et al.  Titan: Evidence for seasonal change - A comparison of Hubble Space Telescope and Voyager images , 1992 .

[31]  J. Pollack,et al.  A first look at atmospheric dynamics and temperature variations on Titan. , 1973 .

[32]  R. Lorenz The life, death and afterlife of a raindrop on Titan , 1993 .

[33]  E. Lellouch,et al.  Titan's atmosphere and hypothesized ocean: A reanalysis of the Voyager 1 radio-occultation and IRIS 7.7-μm data , 1989 .

[34]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[35]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[36]  E. Thouvenot,et al.  Probing Titan's atmosphere by stellar occultation , 1990, Nature.

[37]  Henry B. Hotz,et al.  The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements , 1981 .

[38]  Alain Hauchecorne,et al.  The Aerosol Collector Pyrolyser Experiment for Huygens , 1997 .

[39]  Carl Sagan,et al.  Production and condensation of organic gases in the atmosphere of Titan , 1984 .

[40]  P. Coll,et al.  Organic chemistry in Titan's atmosphere: new data from laboratory simulations at low temperature. , 1995, Advances in space research : the official journal of the Committee on Space Research.

[41]  A. Aikin,et al.  C4H2, HC3N and C2N2 in Titan's atmosphere , 1981, Nature.

[42]  R. Courtin The spectrum of titan in the far-infrared and microwave regions , 1982 .

[43]  C. McKay,et al.  Simulations of Titan's brightness by a two-dimensional haze model. , 1996, Icarus.

[44]  R. Lorenz,et al.  Liquids and solids on the surface of Titan , 1994 .

[45]  Mark Leese,et al.  Huygens' Surface Science Package , 2002 .

[46]  R. E. Samueison Non-Local Thermodynamic Equilibrium in Cloudy Planetary Atmospheres , 1970 .

[47]  R. Samuelson,et al.  Thermal infrared properties of Titan's stratospheric aerosol , 1991 .

[48]  M. Allen,et al.  Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere. , 1992, Icarus.

[49]  G. Lockwood,et al.  The albedo of Titan , 1986 .

[50]  C. McKay,et al.  Seasonal variation of Titan's atmospheric structure simulated by a general circulation model. , 1999, Planetary and space science.

[51]  R. West,et al.  Optical properties of aggregate particles whose outer diameter is comparable to the wavelength. , 1991, Applied optics.

[52]  B. Schmitt,et al.  Plausible condensates in Titan’s stratosphere from Voyager infrared spectra , 1999 .

[53]  M. Lemmon,et al.  Titan's Rotational Light-Curve , 1995 .

[54]  G. Tyler,et al.  Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation , 1983 .

[55]  D. Stevenson The interior of Titan , 1992 .

[56]  D. Gautier,et al.  Titan's thermal emission spectrum: Reanalysis of the Voyager infrared measurements. , 1995 .

[57]  C. McKay,et al.  The greenhouse and antigreenhouse effects on Titan , 1991, Science.

[58]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[59]  Jacek Borysow,et al.  Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K , 1986 .

[60]  R. Samuelson Radiative equilibrium model of Titan's atmosphere , 1983 .

[61]  R. Samuelson,et al.  C4N2 ice in Titan's north polar stratosphere , 1997 .

[62]  C. Griffith Evidence for surface heterogeneity on Titan , 1993, Nature.

[63]  J. Caldwell,et al.  UV spectroscopy of Titan's atmosphere, planetary organic chemistry and prebiological synthesis. II. Interpretation of new IUE observations in the 220-335 nm range. , 1991, Icarus.

[64]  Emmanuel Lellouch,et al.  Erratum: ``Vertical distribution of Titan's atmospheric neutral constituents'' , 1996 .

[65]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[66]  T V Johnson,et al.  Encounter with saturn: voyager 1 imaging science results. , 1981, Science.

[67]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.

[68]  M. Lemmon,et al.  Titan's Rotation: Surface Feature Observed , 1993 .

[69]  E. Chassefière,et al.  Fractal aggregates in Titan's atmosphere , 1993 .

[70]  Donald T. Gavel,et al.  Titan: High-Resolution Speckle Images from the Keck Telescope , 1999 .

[71]  F. Flasar The composition of Titans atmosphere : a meteorological perspective , 1998 .

[72]  D. W. Clarke,et al.  Titan haze: structure and properties of cyanoacetylene and cyanoacetylene-acetylene photopolymers. , 1997, Icarus.

[73]  J. Lunine,et al.  Moist convective clouds in Titan's atmosphere , 1994 .

[74]  J. Pollack,et al.  Vertical distribution of scattering hazes in Titan's upper atmosphere , 1983 .

[75]  R. Turco,et al.  A physical model of Titan's aerosols. , 1992, Icarus.

[76]  T. Owen,et al.  Titan: Discovery of Carbon Monoxide in Its Atmosphere , 1983, Science.

[77]  A. Coustenis,et al.  Titan's Atmosphere from Voyager Infrared Observations: IV. Latitudinal Variations of Temperature and Composition , 1995 .

[78]  P. Feldman,et al.  The Ultraviolet Albedo of Titan , 1998 .

[79]  Y. Yung,et al.  CO_2 on Titan , 1983 .

[80]  E. Chassefière,et al.  Formation and growth of photochemical aerosols in Titan's atmosphere , 1992 .

[81]  W. R. Thompson,et al.  Titan - Far-infrared and microwave remote sensing of methane clouds and organic haze , 1984 .

[82]  Noah Brosch,et al.  The occultation of 28 Sgr by Titan , 1993 .

[83]  Athena Coustenis,et al.  Letter to the Editor ASTRONOMY AND ASTROPHYSICS Evidence for water vapor in Titan’s atmosphere from ISO/SWS data ⋆ LETTER , 1998 .

[84]  Mark T. Lemmon,et al.  Titan's Surface, Revealed by HST Imaging , 1996 .

[85]  C. McKay,et al.  Titan's stratospheric temperature asymmetry: a radiative origin? , 1995, Icarus.

[86]  C. Sagan,et al.  Implications of Titan's north–south brightness asymmetry , 1981, Nature.

[87]  Gerard P. Kuiper,et al.  Titan: a Satellite with an Atmosphere. , 1944 .

[88]  F. Flasar,et al.  Titan's stratospheric temperatures: A case for dynamical inertia? , 1990 .

[89]  F. Flasar,et al.  Titan's atmosphere: temperature and dynamics , 1981, Nature.

[90]  O. Talagrand,et al.  Numerical simulation of the general circulation of the atmosphere of Titan. , 1995, Icarus.

[91]  R. Samuelson,et al.  Mean molecular weight and hydrogen abundance of Titan's atmosphere , 1981, Nature.

[92]  R. Samuelson,et al.  Gaseous abundances and methane supersaturation in Titan's troposphere , 1997 .

[93]  F. Raulin Organic chemistry in the oceans of Titan , 1987 .

[94]  David Coscia,et al.  Experimental laboratory simulation of Titan's atmosphere: aerosols and gas phase , 1999 .

[95]  C. McKay,et al.  Effects of time-varying haze production on Titan's geometric albedo , 1993 .

[96]  A. Bar-Nun,et al.  A constraint on the distribution of Titan's atmospheric aerosol , 1979 .

[97]  A. Genio,et al.  Equatorial superrotation in a slowly rotating GCM - Implications for Titan and Venus , 1993 .

[98]  W. R. Thompson,et al.  Plasma discharge in N2 + CH4 at low pressures: experimental results and applications to Titan. , 1991, Icarus.

[99]  C. Sagan,et al.  The Titan haze revisited: magnetospheric energy sources and quantitative tholin yields. , 1994, Icarus.

[100]  E. Ganor,et al.  Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide , 1988 .

[101]  C. McKay,et al.  Titan's organic haze , 1992 .

[102]  E. Chassefière,et al.  Growth of aerosols in Titan's atmosphere and related time scales: A stochastic approach , 1993 .

[103]  G. Lockwood Secular brightness increases of Titan, Uranus, and Neptune, 1972–1976 , 1977 .

[104]  J. L. Mitchell,et al.  A New Look at the Saturn System: The Voyager 2 Images , 1982, Science.

[105]  B. Bézard,et al.  Stratospheric profile of HCN on Titan from millimeter observations , 1989 .

[106]  Michel Cabane,et al.  Aerosols in Titan's atmosphere : models, sampling techniques and chemical analysis , 1991 .

[107]  M. Lemmon,et al.  Titan's North–South Asymmetry from HST and Voyager Imaging: Comparison with Models and Ground-Based Photometry☆ , 1997 .

[108]  T. Owen,et al.  Titan's surface and troposphere, investigated with ground-based, near-infrared observations. , 1991, Icarus.

[109]  J. Veverka Titan: Polarimetric evidence for an optically thick atmosphere? , 1972 .

[110]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[111]  W. R. Thompson,et al.  Solid hydrocarbon aerosols produced in simulated Uranian and Neptunian stratospheres. , 1987, Journal of geophysical research.

[112]  W. R. Thompson,et al.  Titan: a laboratory for prebiological organic chemistry. , 1992, Accounts of chemical research.

[113]  B. Zellner The polarization of Titan , 1973 .

[114]  T. Owen,et al.  Transient clouds in Titan's lower atmosphere , 1998, Nature.

[115]  C. Sagan,et al.  Red clouds in reducing atmospheres , 1973 .

[116]  Martin G. Tomasko,et al.  Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties , 1982 .