Improving the Diversity of Top-N Recommendation via Determinantal Point Process

Recommender systems take the key responsibility to help users discover items that they might be interested in. Many recommendation algorithms are built upon similarity measures, which usually result in low intra-list diversity. The deficiency in capturing the whole range of user interest often leads to poor satisfaction. To solve this problem, increasing attention has been paid on improving the diversity of recommendation results in recent years. In this paper, we propose a novel method to improve the diversity of top-$N$ recommendation results based on the determinantal point process (DPP), which is an elegant model for characterizing the repulsion phenomenon. We propose an acceleration algorithm to greatly speed up the process of the result inference, making our algorithm practical for large-scale scenarios. We also incorporate a tunable parameter into the DPP model which allows the users to smoothly control the level of diversity. More diversity metrics are introduced to better evaluate diversification algorithms. We have evaluated our algorithm on several public datasets, and compared it thoroughly with other reference algorithms. Results show that our proposed algorithm provides a much better accuracy-diversity trade-off with comparable efficiency.

[1]  Lior Rokach,et al.  Introduction to Recommender Systems Handbook , 2011, Recommender Systems Handbook.

[2]  M. Lemay coverage , 1972, cell tower.

[3]  Wei Zeng,et al.  Adapting Markov Decision Process for Search Result Diversification , 2017, SIGIR.

[4]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[5]  Harald Steck,et al.  Item popularity and recommendation accuracy , 2011, RecSys '11.

[6]  Zheng Wen,et al.  Optimal Greedy Diversity for Recommendation , 2015, IJCAI.

[7]  Dilan Görür,et al.  Diverse Personalization with Determinantal Point Process , 2013 .

[8]  Ulrich Paquet,et al.  Low-Rank Factorization of Determinantal Point Processes , 2017, AAAI.

[9]  Jinwoo Shin,et al.  Faster Greedy MAP Inference for Determinantal Point Processes , 2017, ICML.

[10]  Katja Niemann,et al.  A new collaborative filtering approach for increasing the aggregate diversity of recommender systems , 2013, KDD.

[11]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2015, SIAM J. Comput..

[12]  Edward Y. Chang,et al.  Tweet Timeline Generation with Determinantal Point Processes , 2016, AAAI.

[13]  Gediminas Adomavicius,et al.  Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques , 2012, IEEE Transactions on Knowledge and Data Engineering.

[14]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[15]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[16]  Alexander J. Smola,et al.  Fair and balanced: learning to present news stories , 2012, WSDM '12.

[17]  Maurice Queyranne,et al.  An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..

[18]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[19]  Mi Zhang,et al.  Avoiding monotony: improving the diversity of recommendation lists , 2008, RecSys '08.

[20]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[21]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[22]  Jun Wang,et al.  Adaptive diversification of recommendation results via latent factor portfolio , 2012, SIGIR '12.

[23]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[24]  Ben Taskar,et al.  Structured Determinantal Point Processes , 2010, NIPS.

[25]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[26]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[27]  Ellen M. Voorhees,et al.  The TREC-8 Question Answering Track Report , 1999, TREC.

[28]  Yong Yu,et al.  Set-oriented personalized ranking for diversified top-n recommendation , 2013, RecSys.

[29]  Barry Smyth,et al.  Similarity vs. Diversity , 2001, ICCBR.

[30]  Ben Taskar,et al.  k-DPPs: Fixed-Size Determinantal Point Processes , 2011, ICML.

[31]  Malik Magdon-Ismail,et al.  On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..

[32]  Ben Taskar,et al.  Near-Optimal MAP Inference for Determinantal Point Processes , 2012, NIPS.

[33]  Kristen Grauman,et al.  Diverse Sequential Subset Selection for Supervised Video Summarization , 2014, NIPS.

[34]  Suvrit Sra,et al.  Gaussian quadrature for matrix inverse forms with applications , 2015, ICML.

[35]  Tevfik Aytekin,et al.  Clustering-based diversity improvement in top-N recommendation , 2013, Journal of Intelligent Information Systems.

[36]  Ben Taskar,et al.  Learning Determinantal Point Processes , 2011, UAI.

[37]  Ben Taskar,et al.  Expectation-Maximization for Learning Determinantal Point Processes , 2014, NIPS.

[38]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[39]  Ben Taskar,et al.  Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..

[40]  Cong Yu,et al.  It takes variety to make a world: diversification in recommender systems , 2009, EDBT '09.

[41]  Tova Milo,et al.  Diversification and refinement in collaborative filtering recommender , 2011, CIKM '11.

[42]  Ulrich Paquet,et al.  Bayesian Low-Rank Determinantal Point Processes , 2016, RecSys.

[43]  Nicholas Jing Yuan,et al.  Relevance Meets Coverage , 2016, ACM Trans. Intell. Syst. Technol..

[44]  Xiaojin Zhu,et al.  Improving Diversity in Ranking using Absorbing Random Walks , 2007, NAACL.

[45]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[46]  G. W. Stewart,et al.  Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .

[47]  Choon Hui Teo,et al.  Adaptive, Personalized Diversity for Visual Discovery , 2016, RecSys.

[48]  O. Macchi The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.

[49]  Saul Vargas,et al.  Coverage, redundancy and size-awareness in genre diversity for recommender systems , 2014, RecSys '14.

[50]  Yves Grandvalet,et al.  A Coverage-Based Approach to Recommendation Diversity On Similarity Graph , 2016, RecSys.

[51]  Sean M. McNee,et al.  Being accurate is not enough: how accuracy metrics have hurt recommender systems , 2006, CHI Extended Abstracts.

[52]  Ben Carterette,et al.  Preference based evaluation measures for novelty and diversity , 2013, SIGIR.

[53]  Jennifer Gillenwater Approximate inference for determinantal point processes , 2014 .

[54]  Suvrit Sra,et al.  Fixed-point algorithms for learning determinantal point processes , 2015, ICML.

[55]  Jingrui He,et al.  GenDeR: A Generic Diversified Ranking Algorithm , 2012, NIPS.

[56]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[57]  Ulrich Paquet,et al.  Low-Rank Factorization of Determinantal Point Processes , 2016, AAAI.

[58]  Xiaoyan Zhu,et al.  Promoting Diversity in Recommendation by Entropy Regularizer , 2013, IJCAI.

[59]  Gediminas Adomavicius,et al.  Maximizing Aggregate Recommendation Diversity: A Graph-Theoretic Approach , 2011, RecSys 2011.

[60]  John Riedl,et al.  An Algorithmic Framework for Performing Collaborative Filtering , 1999, SIGIR Forum.

[61]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[62]  Barry Smyth,et al.  Improving Recommendation Diversity , 2001 .

[63]  M. L. Mehta,et al.  ON THE DENSITY OF EIGENVALUES OF A RANDOM MATRIX , 1960 .

[64]  Sunju Park,et al.  A Single-Step Approach to Recommendation Diversification , 2017, WWW.

[65]  Neil J. Hurley,et al.  Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation , 2011, TOIT.

[66]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.