A Pickands type estimator of the extreme value index

One of the main goal of extreme value analysis is to estimate the probability of rare events given a sample from an unknown distribution. The upper tail behavior of this distribution is described by the extreme value index. We present a new estimator of the extreme value index adapted to any domain of attraction. Its construction is similar to the one of Pickands' estimator. its weak consistency and its asymptotic distribution are established and a bias reduction method is proposed. Our estimator is compared with classical extreme value index estimators through a simulation study.

[1]  Armelle Guillou,et al.  A diagnostic for selecting the threshold in extreme value analysis , 2001 .

[2]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[3]  S. Csörgo,et al.  Estimating the tail index , 1998 .

[4]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[5]  Jan Beirlant,et al.  Excess functions and estimation of the extreme-value index , 1996 .

[6]  Laurens de Haan,et al.  Slow Variation and Characterization of Domains of Attraction , 1984 .

[7]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[8]  Laurent Gardes,et al.  Estimation d'une fonction quantile extrême , 2003 .

[9]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[10]  L. Haan,et al.  On the Estimation of the Extreme-Value Index and Large Quantile Estimation , 1989 .

[11]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[12]  Sidney I. Resnick,et al.  Tail estimates motivated by extreme-value theory , 1984, Advances in Applied Probability.

[13]  Jan Beirlant,et al.  Estimation of the extreme-value index and generalized quantile plots , 2005 .

[14]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[15]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[16]  M. Meerschaert Regular Variation in R k , 1988 .

[17]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[18]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[19]  D. Mason,et al.  Central limit theorems for sums of extreme values , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[21]  D. Farnsworth A First Course in Order Statistics , 1993 .