A Pickands type estimator of the extreme value index
暂无分享,去创建一个
[1] Armelle Guillou,et al. A diagnostic for selecting the threshold in extreme value analysis , 2001 .
[2] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[3] S. Csörgo,et al. Estimating the tail index , 1998 .
[4] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[5] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[6] Laurens de Haan,et al. Slow Variation and Characterization of Domains of Attraction , 1984 .
[7] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[8] Laurent Gardes,et al. Estimation d'une fonction quantile extrême , 2003 .
[9] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[10] L. Haan,et al. On the Estimation of the Extreme-Value Index and Large Quantile Estimation , 1989 .
[11] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[12] Sidney I. Resnick,et al. Tail estimates motivated by extreme-value theory , 1984, Advances in Applied Probability.
[13] Jan Beirlant,et al. Estimation of the extreme-value index and generalized quantile plots , 2005 .
[14] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[15] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[16] M. Meerschaert. Regular Variation in R k , 1988 .
[17] J. Corcoran. Modelling Extremal Events for Insurance and Finance , 2002 .
[18] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[19] D. Mason,et al. Central limit theorems for sums of extreme values , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[20] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[21] D. Farnsworth. A First Course in Order Statistics , 1993 .