A new synoptic scale resolving global climate simulation using the Community Earth System Model

High‐resolution global climate modeling holds the promise of capturing planetary‐scale climate modes and small‐scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state‐of‐the‐art high‐resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of “present‐day” simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El‐Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small‐scale features of the climate system to be represented, such as air‐sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high‐resolution run employed 23,404 cores, costing 250 thousand processor‐hours per simulated year and made about two simulated years per day on the NCAR‐Wyoming supercomputer “Yellowstone.”

[1]  John M. Wallace,et al.  Diurnal Variations in Precipitation and Thunderstorm Frequency over the Conterminous United States , 1975 .

[2]  T. Osborn,et al.  Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements , 1980 .

[3]  R. Pacanowski,et al.  The oceanic response to cross‐equatorial winds (with application to coastal upwelling in low latitudes) , 1981 .

[4]  J. Nihoul Coupled ocean-atmosphere models , 1985 .

[5]  Gyu-Ho Lim,et al.  Relationship between Cyclone Tracks, Anticyclone Tracks and Baroclinic Waveguides , 1988 .

[6]  Michael S. Fox-Rabinovitz,et al.  Consistent vertical and horizontal resolution , 1989 .

[7]  C. Deser,et al.  The Influence of Sea Surface Temperature Gradients on Stratiform Cloudiness along the Equatorial Front in the Pacific Ocean , 1993 .

[8]  P. Chang A study of the seasonal cycle of sea surface temperature in the tropical Pacific Ocean using reduced gravity models , 1994 .

[9]  Michael Ghil,et al.  El Ni�o on the Devil's Staircase: Annual Subharmonic Steps to Chaos , 1994, Science.

[10]  H. Dijkstra,et al.  Ocean-Atmosphere Interaction and the Tropical Climatology. Part II: Why the Pacific Cold Tongue Is in the East. , 1995 .

[11]  A. Arakawa,et al.  Peruvian stratus clouds and the tropical Pacific circulation , 1996 .

[12]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[13]  J. Michael Fritsch,et al.  The global population of mesoscale convective complexes , 1997 .

[14]  Benjamin Kirtman,et al.  Decadal Variability in ENSO Predictability and Prediction , 1998 .

[15]  M. Mcphaden,et al.  Seasonal Variability in the Equatorial Pacific , 1999 .

[16]  J. Michael Fritsch,et al.  The Large-Scale Environments of the Global Populations of Mesoscale Convective Complexes , 2000 .

[17]  A. Craig,et al.  Factors that affect the amplitude of El Nino in global coupled climate models , 2001 .

[18]  A. Fedorov,et al.  A Stability Analysis of Tropical Ocean–Atmosphere Interactions: Bridging Measurements and Theory for El Niño , 2001 .

[19]  K. Trenberth,et al.  Estimates of Meridional Atmosphere and Ocean Heat Transports , 2001 .

[20]  John D. Tuttle,et al.  Inferences of Predictability Associated with Warm Season Precipitation Episodes , 2001 .

[21]  P. L. Traon,et al.  A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio Current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data , 2001 .

[22]  John R. Lanzante,et al.  The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans , 2002 .

[23]  R. Voss,et al.  STOIC: a study of coupled model climatology and variability in tropical ocean regions , 2002 .

[24]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[25]  Thomas B. Sanford,et al.  Reduced mixing from the breaking of internal waves in equatorial waters , 2003, Nature.

[26]  George S. Young,et al.  Mesoscale Stratocumulus Bands Caused by Gulf Stream Meanders , 2003 .

[27]  M. Brandon,et al.  Transport and variability of the Antarctic Circumpolar Current in Drake Passage , 2003 .

[28]  D. Chelton,et al.  Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds , 2004, Science.

[29]  Shang-Ping Xie,et al.  Satellite Observations of Cool Ocean–Atmosphere Interaction , 2004 .

[30]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[31]  K. Koltermann,et al.  WOCE Global Hydrographic Climatology , 2004 .

[32]  A. A. Marin,et al.  Community Atmosphere Model , 2004 .

[33]  Thomas M. Smith,et al.  A Global Merged Land–Air–Sea Surface Temperature Reconstruction Based on Historical Observations (1880–1997) , 2005 .

[34]  Jan Hafner,et al.  Satellite observations of mesoscale ocean features and copropagating atmospheric surface fields in the tropical belt , 2005 .

[35]  J. Hansen,et al.  Earth's Energy Imbalance: Confirmation and Implications , 2005, Science.

[36]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[37]  E. Guilyardi El Niño–mean state–seasonal cycle interactions in a multi-model ensemble , 2006 .

[38]  R. Murtugudde,et al.  Temperature Advection by Tropical Instability Waves , 2006 .

[39]  Namir,et al.  Authors , 1947, Praxis der Kinderpsychologie und Kinderpsychiatrie.

[40]  Gokhan Danabasoglu,et al.  Attribution and Impacts of Upper-Ocean Biases in CCSM3 , 2006 .

[41]  James C. McWilliams,et al.  Diurnal Coupling in the Tropical Oceans of CCSM3 , 2006 .

[42]  Robert A. Weller,et al.  Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005) , 2007 .

[43]  Frank O. Bryan,et al.  Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system , 2007 .

[44]  Alan J. Wallcraft,et al.  A Correction for Land Contamination of Atmospheric Variables near Land–Sea Boundaries* , 2007 .

[45]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[46]  J. Carton,et al.  Seasonal Climate of the Tropical Atlantic Sector in the NCAR Community Climate System Model 3: Error Structure and Probable Causes of Errors , 2007 .

[47]  Shang-Ping Xie,et al.  Mapping High Sea Winds from Space: A Global Climatology , 2007 .

[48]  William E. Johns,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[49]  Thomas M. Smith,et al.  Daily High-Resolution-Blended Analyses for Sea Surface Temperature , 2007 .

[50]  B. Kirtman,et al.  Decadal Modulation of ENSO in a Hybrid Coupled Model , 2008 .

[51]  R. Neale,et al.  The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events , 2008 .

[52]  M. Rodwell,et al.  Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts , 2008 .

[53]  James J. Hack,et al.  A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model , 2008 .

[54]  R. Murtugudde,et al.  Precipitation from African Easterly Waves in a Coupled Model of the Tropical Atlantic , 2008 .

[55]  Dudley B. Chelton,et al.  A Global Climatology of Surface Wind and Wind Stress Fields from Eight Years of QuikSCAT Scatterometer Data , 2008 .

[56]  Program Studies the Kuroshio Extension , 2008 .

[57]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[58]  Marika M. Holland,et al.  Ocean viscosity and climate , 2008 .

[59]  S. Xie,et al.  On the origin of equatorial Atlantic biases in coupled general circulation models , 2008 .

[60]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[61]  Simon Wilson,et al.  U.K. HiGEM: The New U.K. High-Resolution Global Environment Model― Model Description and Basic Evaluation , 2009 .

[62]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[63]  Earth's Global Energy Budget , 2009 .

[64]  David M. Fratantoni,et al.  THE CLIMODE FIELD CAMPAIGN: Observing the Cycle of Convection and Restratification over the Gulf Stream , 2009 .

[65]  David P. Stevens,et al.  Impact of Resolution on the Tropical Pacific Circulation in a Matrix of Coupled Models , 2009 .

[66]  Lisan Yu,et al.  On the Relationship between Synoptic Wintertime Atmospheric Variability and Path Shifts in the Gulf Stream and the Kuroshio Extension , 2009 .

[67]  A. Wittenberg Are historical records sufficient to constrain ENSO simulations? , 2009 .

[68]  Markus Jochum,et al.  Impact of latitudinal variations in vertical diffusivity on climate simulations , 2009 .

[69]  Mariana Vertenstein,et al.  The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) , 2010 .

[70]  S. Dickinson,et al.  The Signature of the Midlatitude Tropospheric Storm Tracks in the Surface Winds , 2010 .

[71]  Frank O. Bryan,et al.  A prototype two-decade fully-coupled fine-resolution CCSM simulation , 2010 .

[72]  R. Neale,et al.  Improvements in a half degree atmosphere/land version of the CCSM , 2010 .

[73]  C. J. Neumann,et al.  The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone data. , 2010 .

[74]  R. Samelson,et al.  Western Boundary Currents and Frontal Air–Sea Interaction: Gulf Stream and Kuroshio Extension , 2010 .

[75]  Young‐Oh Kwon,et al.  An Enhancement of Low-Frequency Variability in the Kuroshio–Oyashio Extension in CCSM3 owing to Ocean Model Biases , 2010 .

[76]  Frank O. Bryan,et al.  Frontal scale air-sea interaction in high-resolution coupled climate models , 2010 .

[77]  J. Marotzke,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[78]  Hisashi Nakamura,et al.  Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large-Scale Atmosphere–Ocean Interaction: A Review , 2010 .

[79]  Henry M. Tufo,et al.  Evaluation of the HOMME dynamical core in the aqua-planet configuration of NCAR CAM4: Rainfall , 2011 .

[80]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[81]  J. Whitaker,et al.  The Twentieth Century Reanalysis Project 3 , 2011 .

[82]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[83]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[84]  Richard C. J. Somerville,et al.  Orogenic Propagating Precipitation Systems over the United States in a Global Climate Model with Embedded Explicit Convection , 2011 .

[85]  M. Latif,et al.  On the Tropical Atlantic SST warm bias in the Kiel Climate Model , 2011 .

[86]  Richard Neale,et al.  The Madden–Julian Oscillation in CCSM4 , 2011 .

[87]  Mark A. Taylor,et al.  CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model , 2012, Int. J. High Perform. Comput. Appl..

[88]  Gerald A. Meehl,et al.  Monsoon Regimes and Processes in CCSM4. Part II: African and American Monsoon Systems , 2012 .

[89]  Robert Pincus,et al.  Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators , 2012 .

[90]  David R. Doelling,et al.  Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty , 2012 .

[91]  J. Booth,et al.  Sensitivity of Midlatitude Storm Intensification to Perturbations in the Sea Surface Temperature near the Gulf Stream , 2012 .

[92]  David L. Williamson,et al.  Southeast Pacific Stratocumulus in the Community Atmosphere Model , 2012 .

[93]  Toru Nozawa,et al.  MIROC4h—A New High-Resolution Atmosphere-Ocean Coupled General Circulation Model , 2012 .

[94]  Frank O. Bryan,et al.  Impact of ocean model resolution on CCSM climate simulations , 2012, Climate Dynamics.

[95]  Adam S. Phillips,et al.  ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4 , 2012 .

[96]  G. Vecchi,et al.  Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model , 2012 .

[97]  S. Bates,et al.  Mean and variability of the Tropical Atlantic Ocean in the CCSM4 , 2012 .

[98]  J. Carton,et al.  Tropical Atlantic Biases in CCSM4 , 2012 .

[99]  F. Bryan,et al.  A Comparison of Mesoscale Eddy Heat Fluxes from Observations and a High-Resolution Ocean Model Simulation of the Kuroshio Extension , 2013 .

[100]  Frank O. Bryan,et al.  Storm track response to ocean fronts in a global high-resolution climate model , 2014, Climate Dynamics.

[101]  W. G. Strand,et al.  Climate Change Projections in CESM1(CAM5) Compared to CCSM4 , 2013 .

[102]  E. Guilyardi,et al.  ENSO representation in climate models: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[103]  T. Toniazzo,et al.  Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts , 2014, Climate Dynamics.

[104]  Brian J. Hoskins,et al.  The potential for skill across the range of the seamless weather‐climate prediction problem: a stimulus for our science , 2013 .

[105]  Kevin E. Trenberth,et al.  Distinctive climate signals in reanalysis of global ocean heat content , 2013 .

[106]  J. MacKinnon Oceanography: Mountain waves in the deep ocean , 2013, Nature.

[107]  W. Collins,et al.  The Community Earth System Model: A Framework for Collaborative Research , 2013 .

[108]  X. Jin,et al.  Assessing high-resolution analysis of surface heat fluxes in the Gulf Stream region , 2013 .

[109]  J. Bacmeister,et al.  Effects of vertical resolution and nonorographic gravity wave drag on the simulated climate in the Community Atmosphere Model, version 5 , 2014 .

[110]  C. Hannay,et al.  Exploratory High-Resolution Climate Simulations using the Community Atmosphere Model (CAM) , 2014 .

[111]  Andrew T. Wittenberg,et al.  Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models , 2015 .