Construction of fully conjugated pyrazine derivative organic cathode for high-rate and long-lifetime lithium-ion batteries

[1]  Sen Xin,et al.  Fast and Regulated Zinc Deposition in a Semiconductor Substrate toward High‐Performance Aqueous Rechargeable Batteries , 2022, Advanced Functional Materials.

[2]  Devendrasinh Darbar,et al.  An overview of cobalt-free, nickel-containing cathodes for Li-ion batteries , 2022, Materials Today Energy.

[3]  M. Jaroniec,et al.  Triple‐Function Electrolyte Regulation toward Advanced Aqueous Zn‐Ion Batteries , 2022, Advanced materials.

[4]  Fei Li,et al.  Ion Transport Kinetics in Low‐Temperature Lithium Metal Batteries , 2022, Advanced Energy Materials.

[5]  Songtao Lu,et al.  Accelerating the Electrochemical Kinetics of Metal-Iodine Batteries: Progress and Prospects , 2022, Materials Today Energy.

[6]  Chaofeng Zhang,et al.  Application of cellulose‐based hydrogel electrolytes in flexible batteries , 2022, Carbon Neutralization.

[7]  Feng Wang,et al.  Oxidized Indanthrone as a Cost-Effective and High-Performance Organic Cathode Material for Rechargeable Lithium Batteries , 2022, Energy Storage Materials.

[8]  Jia Xie,et al.  A Stable Covalent Organic Framework Cathode Enables Ultra-Long Cycle Life for Alkali and Multivalent Metal Rechargeable Batteries , 2022, Energy Storage Materials.

[9]  Sen Xin,et al.  Designing π-conjugated polypyrene nanoflowers formed with meso- and microporous nanosheets for high-performance anode of potassium ion batteries , 2022, Chemical Engineering Journal.

[10]  T. Zhai,et al.  Two-dimensional Organic Supramolecule via Hydrogen Bonding and π-π Stacking for Ultrahigh Capacity and Long-Life Aqueous Zinc-Organic Batteries. , 2022, Angewandte Chemie.

[11]  Jianping Long,et al.  Tailoring Mixed Geometrical Configurations in Amorphous Catalysts to Activate Oxygen Electrode Reactions of Lithium-Oxygen Batteries , 2022, SSRN Electronic Journal.

[12]  Fangxi Xie,et al.  Studying conversion mechanism to broaden cathode options in aqueous Zn-ion batteries. , 2021, Angewandte Chemie.

[13]  Hao Li,et al.  Conjugated Porous Polydiaminophenylsulfone-Triazine Polymer-A High-Performance Anode for Li-Ion Batteries. , 2021, ACS applied materials & interfaces.

[14]  Tengfei Zhou,et al.  Conjugated porous polyimide poly(2,6-diaminoanthraquinone) benzamide with good stability and high-performance as cathode for sodium ion batteries , 2021 .

[15]  Le Cai,et al.  2D Organic Radical Conjugated Skeletons with Paramagnetic Behaviors , 2021, Advanced Materials Interfaces.

[16]  Xinxin Wang,et al.  Insoluble small-molecule organic cathodes for highly efficient pure-organic Li-ion batteries , 2021, Green Chemistry.

[17]  H. Fan,et al.  Understanding cathode materials in aqueous zinc–organic batteries , 2021 .

[18]  Xiao‐Guang Sun,et al.  Supramolecular Self‐Assembled Multi‐Electron‐Acceptor Organic Molecule as High‐Performance Cathode Material for Li‐Ion Batteries , 2021, Advanced Energy Materials.

[19]  Tao Huang,et al.  Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries. , 2021, Journal of colloid and interface science.

[20]  Jianfeng Shen,et al.  Extended π-Conjugated System in Organic Cathode with Active C═N Bonds for Driving Aqueous Zinc-Ion Batteries , 2021 .

[21]  Weijun Li,et al.  Study of Multi-Electron Redox Mechanism via Electrochromic Behavior in Hexaazatrinaphthylene-Based Polymer as Cathode of Lithium Organic Batteries , 2021, Journal of Materials Chemistry A.

[22]  V. Kale,et al.  Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery , 2020, ACS Energy Letters.

[23]  V. K. Peterson,et al.  Phase Evolution and Intermittent Disorder in Electrochemically Lithiated Graphite Determined Using in Operando Neutron Diffraction , 2020 .

[24]  Zhiqiang Niu,et al.  Proton Insertion Chemistry of Zn/Organic Battery. , 2020, Angewandte Chemie.

[25]  Yong Wang,et al.  Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Battery. , 2019, ACS nano.

[26]  Xiulin Fan,et al.  A Pyrazine-Based Polymer for Fast-Charge Batteries. , 2019, Angewandte Chemie.

[27]  Hong Dong,et al.  Theory-Driven Design and Targeting Synthesis of a Highly-Conjugated Basal-Plane 2D Covalent Organic Framework for Metal-Free Electrocatalytic OER , 2019, ACS Energy Letters.

[28]  Heng Wang,et al.  Conjugated Carbonyl Polymer-based Flexible Cathode for Superior Lithium-Organic Batteries. , 2019, ACS applied materials & interfaces.

[29]  Zhichuan J. Xu,et al.  Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries , 2019, Journal of Materials Chemistry A.

[30]  Yuhan Wu,et al.  High-performance lithium–organic batteries by achieving 16 lithium storage in poly(imine-anthraquinone) , 2019, Journal of Materials Chemistry A.

[31]  Yan Wang,et al.  Al2O3 coated LiCoO2 as cathode for high-capacity and long-cycling Li-ion batteries , 2018, Chinese Chemical Letters.

[32]  Zhiqiang Niu,et al.  Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries , 2018, Chem.

[33]  Ping Liu,et al.  Perylene diimide-diamine/carbon black composites as high performance lithium/sodium ion battery cathodes , 2018 .

[34]  Zaiping Guo,et al.  Advances in Polar Materials for Lithium–Sulfur Batteries , 2018, Advanced Functional Materials.

[35]  Yong Wang,et al.  Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry , 2018, Nature Communications.

[36]  M. Armand,et al.  Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes , 2017, Nature Energy.

[37]  Rui Chen,et al.  An impedance model for EIS analysis of nickel metal hydride batteries , 2017 .

[38]  Zhen Zhou,et al.  Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries , 2016 .

[39]  José L. Segura,et al.  Hexaazatriphenylene (HAT) derivatives: from synthesis to molecular design, self-organization and device applications. , 2015, Chemical Society reviews.

[40]  Zhiqiang Niu,et al.  High‐Performance Organic Lithium Batteries with an Ether‐Based Electrolyte and 9,10‐Anthraquinone (AQ)/CMK‐3 Cathode , 2015, Advanced science.

[41]  Xiqian Yu,et al.  Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group , 2014 .

[42]  Zhaoqi Guo,et al.  Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. , 2011, Angewandte Chemie.

[43]  T. Sugimoto,et al.  High-performance Lithium Secondary Batteries Using Cathode Active Materials of Triquinoxalinylenes Exhibiting Six Electron Migration , 2011 .

[44]  K. Du,et al.  Synthesis and characterization of phosphate-modified LiMn2O4 cathode materials for Li-ion battery , 2010 .

[45]  K. Du,et al.  Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries , 2009 .