Podocytes

Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.

[1]  S. Shankland,et al.  Cell cycle re-entry sensitizes podocytes to injury induced death , 2016, Cell cycle.

[2]  D. Salant Podocyte Expression of B7-1/CD80: Is it a Reliable Biomarker for the Treatment of Proteinuric Kidney Diseases with Abatacept? , 2016, Journal of the American Society of Nephrology : JASN.

[3]  V. D’Agati,et al.  Podocyte-Specific Deletion of Yes-Associated Protein Causes FSGS and Progressive Renal Failure. , 2016, Journal of the American Society of Nephrology : JASN.

[4]  Y. Tomino,et al.  Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice. , 2015, Biochemical and biophysical research communications.

[5]  A. Quyyumi,et al.  Soluble Urokinase Receptor and Chronic Kidney Disease. , 2015, The New England journal of medicine.

[6]  P. Boor,et al.  Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis. , 2015, Kidney international.

[7]  B. Schermer,et al.  The NF-κB essential modulator (NEMO) controls podocyte cytoskeletal dynamics independently of NF-κB. , 2015, AJP - Renal Physiology.

[8]  J. Reiser,et al.  Bridges to cross, burn, and mend: cells of renin lineage as podocyte progenitors. , 2015, American journal of physiology. Renal physiology.

[9]  J. He,et al.  Dendrin ablation prolongs life span by delaying kidney failure. , 2015, The American journal of pathology.

[10]  Caixia Li,et al.  (Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose. , 2015, American journal of physiology. Endocrinology and metabolism.

[11]  C. Chatziantoniou,et al.  Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease. , 2015, Journal of the American Society of Nephrology : JASN.

[12]  I. Pawluczyk,et al.  Sialic acid supplementation ameliorates puromycin aminonucleoside nephrosis in rats , 2015, Laboratory Investigation.

[13]  Margaret Y. Nettleton,et al.  KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. , 2015, The Journal of clinical investigation.

[14]  J. Hodgin,et al.  Podometrics as a Potential Clinical Tool for Glomerular Disease Management. , 2015, Seminars in nephrology.

[15]  C. Forsblom,et al.  Podocyte apoptosis is prevented by blocking the Toll-like receptor pathway , 2015, Cell Death and Disease.

[16]  Nicholas J. Tardi,et al.  A Podocyte-Based Automated Screening Assay Identifies Protective Small Molecules. , 2015, Journal of the American Society of Nephrology : JASN.

[17]  Yangbin Pan,et al.  IQGAP1 regulates actin cytoskeleton organization in podocytes through interaction with nephrin. , 2015, Cellular signalling.

[18]  N. Katsanis,et al.  A novel missense mutation of Wilms' Tumor 1 causes autosomal dominant FSGS. , 2015, Journal of the American Society of Nephrology : JASN.

[19]  X. Zha,et al.  A vital role for Angptl3 in the PAN-induced podocyte loss by affecting detachment and apoptosis in vitro , 2015, BMC Nephrology.

[20]  M. Uhlén,et al.  Schip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin , 2015, PloS one.

[21]  M. Selig,et al.  Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models , 2015, Nature Medicine.

[22]  N. Gretz,et al.  Mechanical stress enhances CD9 expression in cultured podocytes. , 2015, American journal of physiology. Renal physiology.

[23]  Edward Y. Chen,et al.  Krüppel-like factor 6 regulates mitochondrial function in the kidney. , 2015, The Journal of clinical investigation.

[24]  P. Gros,et al.  Deficiency of the planar cell polarity protein Vangl2 in podocytes affects glomerular morphogenesis and increases susceptibility to injury. , 2015, Journal of the American Society of Nephrology : JASN.

[25]  K. Tryggvason,et al.  Rhophilin-1 is a key regulator of the podocyte cytoskeleton and is essential for glomerular filtration. , 2015, Journal of the American Society of Nephrology : JASN.

[26]  R. Müller,et al.  Inhibition of insulin/IGF-1 receptor signaling protects from mitochondria-mediated kidney failure , 2015, EMBO molecular medicine.

[27]  S. Dryer,et al.  RETRACTION: STAT3 Regulates Steady-State Expression of Synaptopodin in Cultured Mouse Podocytes , 2015, Molecular Pharmacology.

[28]  A. Koziell,et al.  Genes and Podocytes – New Insights into Mechanisms of Podocytopathy , 2014, Front. Endocrinol..

[29]  Y. Tomino,et al.  Podocin is translocated to cytoplasm in puromycin aminonucleoside nephrosis rats and in poor-prognosis patients with IgA nephropathy , 2015, Cell and Tissue Research.

[30]  C. Macrae,et al.  Human Kidney Disease-causing INF2 Mutations Perturb Rho/Dia Signaling in the Glomerulus , 2014, EBioMedicine.

[31]  C. Sawyers,et al.  MAGI-2 scaffold protein is critical for kidney barrier function , 2014, Proceedings of the National Academy of Sciences.

[32]  J. Kopp,et al.  Podocyte Injury Caused by Indoxyl Sulfate, a Uremic Toxin and Aryl-Hydrocarbon Receptor Ligand , 2014, PloS one.

[33]  M. Itoh,et al.  The Structural and Functional Organization of the Podocyte Filtration Slits Is Regulated by Tjp1/ZO-1 , 2014, PloS one.

[34]  G. Genovese,et al.  Mutations in PAX2 associate with adult-onset FSGS. , 2014, Journal of the American Society of Nephrology : JASN.

[35]  G. Remuzzi,et al.  Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement. , 2014, Journal of the American Society of Nephrology : JASN.

[36]  K. Skorecki,et al.  APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability. , 2014, American journal of physiology. Renal physiology.

[37]  J. Duffield,et al.  Progenitor cells and podocyte regeneration. , 2014, Seminars in nephrology.

[38]  M. Rastaldi,et al.  Role of podocyte B7-1 in diabetic nephropathy. , 2014, Journal of the American Society of Nephrology : JASN.

[39]  V. D’Agati,et al.  Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro. , 2014, American journal of physiology. Renal physiology.

[40]  T. Nyman,et al.  Ezrin is down-regulated in diabetic kidney glomeruli and regulates actin reorganization and glucose uptake via GLUT1 in cultured podocytes. , 2014, The American journal of pathology.

[41]  Jean X. Jiang,et al.  Reduction of Proteinuria through Podocyte Alkalinization* , 2014, The Journal of Biological Chemistry.

[42]  D. Satoh,et al.  aPKCλ maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface , 2014, Journal of biochemistry.

[43]  V. D’Agati,et al.  Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis-associated glomerular injury. , 2014, The Journal of clinical investigation.

[44]  Xue-juan Li,et al.  The Role of Survivin in Podocyte Injury Induced by Puromycin Aminonucleoside , 2014, International journal of molecular sciences.

[45]  J. Reiser,et al.  Abatacept in B7-1-positive proteinuric kidney disease. , 2014, The New England journal of medicine.

[46]  A. Adeyemo,et al.  Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. , 2014, Journal of the American Society of Nephrology : JASN.

[47]  D. Cattran,et al.  Glomerular diseases: FSGS. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[48]  S. Ishibe,et al.  Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. , 2014, The Journal of clinical investigation.

[49]  G. Remuzzi,et al.  β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. , 2014, Journal of the American Society of Nephrology : JASN.

[50]  B. Smeets,et al.  The emergence of the glomerular parietal epithelial cell , 2014, Nature Reviews Nephrology.

[51]  C. B. Marshall,et al.  Angiopoietin-like 4 based therapeutics for proteinuria and kidney disease , 2014, Front. Pharmacol..

[52]  A. Jehle,et al.  Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2. , 2014, American journal of physiology. Renal physiology.

[53]  Shanhua Xu,et al.  Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. , 2014, American journal of physiology. Renal physiology.

[54]  S. Kersten,et al.  Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome , 2013, Nature Medicine.

[55]  J. Esko,et al.  Podocyte-specific deletion of NDST1, a key enzyme in the sulfation of heparan sulfate glycosaminoglycans, leads to abnormalities in podocyte organization in vivo , 2013, Kidney international.

[56]  A. Paterson,et al.  ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. , 2013, The Journal of clinical investigation.

[57]  Craig W Lindsley,et al.  Inhibition of the TRPC5 ion channel protects the kidney filter. , 2013, The Journal of clinical investigation.

[58]  S. Dryer,et al.  Transient Receptor Potential Channel 6 (TRPC6) Protects Podocytes during Complement-mediated Glomerular Disease* , 2013, The Journal of Biological Chemistry.

[59]  X. Zha,et al.  Angiopoietin-Like 3 Induces Podocyte F-Actin Rearrangement through Integrin α V β 3/FAK/PI3K Pathway-Mediated Rac1 Activation , 2013, BioMed research international.

[60]  G. Remuzzi,et al.  Overview of Complement Activation and Regulation , 2013, Seminars in nephrology.

[61]  H. Anders,et al.  New insights into the pathology of podocyte loss: mitotic catastrophe. , 2013, The American journal of pathology.

[62]  T. Takano,et al.  Complement-mediated cellular injury. , 2013, Seminars in nephrology.

[63]  R. Spang,et al.  LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. , 2013, Journal of the American Society of Nephrology : JASN.

[64]  M. Pontoglio,et al.  AKT2 is essential to maintain podocyte viability and function during chronic kidney disease , 2013, Nature Medicine.

[65]  F. Grahammer,et al.  The podocyte slit diaphragm—from a thin grey line to a complex signalling hub , 2013, Nature Reviews Nephrology.

[66]  L. Guarente,et al.  Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes , 2013, Nature Medicine.

[67]  C. Cohen,et al.  Susceptibility of podocytes to palmitic acid is regulated by stearoyl-CoA desaturases 1 and 2. , 2013, The American journal of pathology.

[68]  Bicheng Liu,et al.  Mitochondrial dysfunction is an early event in aldosterone-induced podocyte injury. , 2013, American journal of physiology. Renal physiology.

[69]  H. Anders,et al.  The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. , 2013, The American journal of pathology.

[70]  Y. Kikkawa,et al.  Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. , 2013, Journal of the American Society of Nephrology : JASN.

[71]  S. Levy,et al.  ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. , 2013, The Journal of clinical investigation.

[72]  Á. Valverde,et al.  Insulin directly stimulates VEGF-A production in the glomerular podocyte. , 2013, American journal of physiology. Renal physiology.

[73]  H. Kawachi,et al.  Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes , 2013, The Journal of Biological Chemistry.

[74]  H. Anders,et al.  Podocyte loss involves MDM2‐driven mitotic catastrophe , 2013, The Journal of pathology.

[75]  L. Hoefsloot,et al.  New TRPC6 gain-of-function mutation in a non-consanguineous Dutch family with late-onset focal segmental glomerulosclerosis. , 2013, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[76]  Lei Jiang,et al.  Calmodulin-dependent Protein Kinase II/cAMP Response Element-binding Protein/Wnt/β-Catenin Signaling Cascade Regulates Angiotensin II-induced Podocyte Injury and Albuminuria* , 2013, The Journal of Biological Chemistry.

[77]  D. Salant,et al.  Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis , 2013, Kidney international.

[78]  Matthias Kretzler,et al.  Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury , 2013, Kidney international.

[79]  M. Sudol,et al.  Yes-associated Protein (YAP) Promotes Cell Survival by Inhibiting Proapoptotic Dendrin Signaling* , 2013, The Journal of Biological Chemistry.

[80]  J. Schlöndorff,et al.  Gain-of-function Mutations in Transient Receptor Potential C6 (TRPC6) Activate Extracellular Signal-regulated Kinases 1/2 (ERK1/2)* , 2013, The Journal of Biological Chemistry.

[81]  I. Hers,et al.  Insulin‐like growth factor‐II is produced by, signals to and is an important survival factor for the mature podocyte in man and mouse , 2013, The Journal of pathology.

[82]  S. Snapper,et al.  N-wasp is required for stabilization of podocyte foot processes. , 2013, Journal of the American Society of Nephrology : JASN.

[83]  O. Kretz,et al.  Vps34 deficiency reveals the importance of endocytosis for podocyte homeostasis. , 2013, Journal of the American Society of Nephrology : JASN.

[84]  P. Singhal,et al.  High glucose induces autophagy in podocytes. , 2013, Experimental cell research.

[85]  S. Ikehara,et al.  A Novel Nuclear Factor κB Inhibitor, Dehydroxymethylepoxyquinomicin, Ameliorates Puromycin Aminonucleoside-Induced Nephrosis in Mice , 2013, American Journal of Nephrology.

[86]  D. Sahali,et al.  Upregulation of c-mip is closely related to podocyte dysfunction in membranous nephropathy. , 2013, Kidney international.

[87]  Jian-Kang Chen,et al.  mVps34 deletion in podocytes causes glomerulosclerosis by disrupting intracellular vesicle trafficking. , 2013, Journal of the American Society of Nephrology : JASN.

[88]  Kevin C. H. Ha,et al.  ARHGDIA: a novel gene implicated in nephrotic syndrome , 2013, Journal of Medical Genetics.

[89]  Patrick D. Dummer,et al.  Endocytosis of Albumin by Podocytes Elicits an Inflammatory Response and Induces Apoptotic Cell Death , 2013, PloS one.

[90]  H. Anders,et al.  Podocyte Mitosis – A Catastrophe , 2012, Current molecular medicine.

[91]  G. Genovese,et al.  Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis , 2012, Kidney international.

[92]  T. Srivastava,et al.  LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: changes in TLR profile , 2012, Journal of Cell Communication and Signaling.

[93]  P. De Camilli,et al.  Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. , 2012, The Journal of clinical investigation.

[94]  K. Amann,et al.  Impairment of podocyte function by diphtheria toxin—a new reversible proteinuria model in mice , 2012, Laboratory Investigation.

[95]  F. Thaiss,et al.  Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria. , 2012, American journal of physiology. Renal physiology.

[96]  Sara Conti,et al.  Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. , 2012, American journal of physiology. Renal physiology.

[97]  L. Holzman,et al.  Podocyte-specific knockout of myosin 1e disrupts glomerular filtration. , 2012, American journal of physiology. Renal physiology.

[98]  J. Yates,et al.  Septin 7 forms a complex with CD2AP and nephrin and regulates glucose transporter trafficking , 2012, Molecular biology of the cell.

[99]  P. Chuang,et al.  The Glomerular Filtration Barrier: Components and Crosstalk , 2012, International journal of nephrology.

[100]  D. Fingar,et al.  Growth-dependent podocyte failure causes glomerulosclerosis. , 2012, Journal of the American Society of Nephrology : JASN.

[101]  T. Pawson,et al.  Podocyte-specific loss of Cdc42 leads to congenital nephropathy. , 2012, Journal of the American Society of Nephrology : JASN.

[102]  B. Smeets,et al.  Parietal epithelial cells and podocytes in glomerular diseases. , 2012, Seminars in nephrology.

[103]  T. B. Huber,et al.  How many ways can a podocyte die? , 2012, Seminars in nephrology.

[104]  S. Lepreux,et al.  IQGAP1 Interacts with Components of the Slit Diaphragm Complex in Podocytes and Is Involved in Podocyte Migration and Permeability In Vitro , 2012, PloS one.

[105]  L. Holzman,et al.  Podocytes: gaining a foothold. , 2012, Experimental cell research.

[106]  R. Ummanni,et al.  Morphology and migration of podocytes are affected by CD151 levels. , 2012, American journal of physiology. Renal physiology.

[107]  E. Torban,et al.  TNFα pathway blockade ameliorates toxic effects of FSGS plasma on podocyte cytoskeleton and β3 integrin activation , 2012, Pediatric Nephrology.

[108]  Chengjin Li,et al.  Inhibition of MTOR disrupts autophagic flux in podocytes. , 2012, Journal of the American Society of Nephrology : JASN.

[109]  Hongxia Yang,et al.  Angiotensin II induces nephrin dephosphorylation and podocyte injury: role of caveolin-1. , 2012, Cellular signalling.

[110]  S. Chugh,et al.  New insights into human minimal change disease: lessons from animal models. , 2012, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[111]  T. Curran,et al.  Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. , 2012, The Journal of clinical investigation.

[112]  C. Esmon,et al.  Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes. , 2012, Blood.

[113]  M. Sánchez-Niño,et al.  HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II , 2012, Laboratory Investigation.

[114]  S. Madhavan,et al.  WT1-interacting protein (Wtip) regulates podocyte phenotype by cell-cell and cell-matrix contact reorganization. , 2012, American journal of physiology. Renal physiology.

[115]  M. Lanaspa,et al.  Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. , 2012, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[116]  F. Luft,et al.  Prorenin receptor is essential for podocyte autophagy and survival. , 2011, Journal of the American Society of Nephrology : JASN.

[117]  H. Itoh,et al.  Prorenin receptor is essential for normal podocyte structure and function. , 2011, Journal of the American Society of Nephrology : JASN.

[118]  K. Samuel,et al.  Acute Multiple Organ Failure in Adult Mice Deleted for the Developmental Regulator Wt1 , 2011, PLoS genetics.

[119]  M. Farquhar,et al.  Phosphorylation of podocalyxin (Ser415) Prevents RhoA and ezrin activation and disrupts its interaction with the actin cytoskeleton. , 2011, The American journal of pathology.

[120]  C. Antignac,et al.  Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. , 2011, The Journal of clinical investigation.

[121]  T. Reinheckel,et al.  CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. , 2011, The Journal of clinical investigation.

[122]  R. D. de Boer,et al.  Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. , 2011, The American journal of pathology.

[123]  Zhong-hua Zhu,et al.  Regulation of CD2-associated protein influences podocyte endoplasmic reticulum stress-mediated apoptosis induced by albumin overload. , 2011, Gene.

[124]  C. Fraune,et al.  Podocytes of AT2 Receptor Knockout Mice Are Protected from Angiotensin II-Mediated RAGE Induction , 2011, American Journal of Nephrology.

[125]  T. Palomero,et al.  Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. , 2011, Kidney international.

[126]  E. Salido,et al.  Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis , 2011, Nature Medicine.

[127]  G. Remuzzi,et al.  MYO1E mutations and childhood familial focal segmental glomerulosclerosis. , 2011, The New England journal of medicine.

[128]  A. Bakkaloğlu,et al.  Disruption of PTPRO causes childhood-onset nephrotic syndrome. , 2011, American journal of human genetics.

[129]  Jie Ding,et al.  Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury. , 2011, Kidney international.

[130]  M. Hall,et al.  mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. , 2011, The Journal of clinical investigation.

[131]  R. Wanke,et al.  Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. , 2011, The Journal of clinical investigation.

[132]  M. Rastaldi,et al.  Rituximab Targets Podocytes in Recurrent Focal Segmental Glomerulosclerosis , 2011, Science Translational Medicine.

[133]  M. Taketo,et al.  Wnt/β-Catenin Pathway in Podocytes Integrates Cell Adhesion, Differentiation, and Survival* , 2011, The Journal of Biological Chemistry.

[134]  V. Pertegato,et al.  COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. , 2011, The Journal of clinical investigation.

[135]  Ronghua Chen,et al.  Cardiovascular , Pulmonary , and Renal Pathology Mitochondrial Dysfunction Mediates Aldosterone-Induced Podocyte Damage A Therapeutic Target of PPAR , 2011 .

[136]  Yusuke Nakamura,et al.  Common variation in GPC5 is associated with acquired nephrotic syndrome , 2011, Nature Genetics.

[137]  Y. Kikkawa,et al.  A missense LAMB2 mutation causes congenital nephrotic syndrome by impairing laminin secretion. , 2011, Journal of the American Society of Nephrology : JASN.

[138]  M. Wagner,et al.  Motor Protein Myo1c Is a Podocyte Protein That Facilitates the Transport of Slit Diaphragm Protein Neph1 to the Podocyte Membrane , 2011, Molecular and Cellular Biology.

[139]  G. Mollet,et al.  Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. , 2011, Journal of the American Society of Nephrology : JASN.

[140]  E. Torban,et al.  Planar cell polarity pathway regulates actin rearrangement, cell shape, motility, and nephrin distribution in podocytes. , 2011, American journal of physiology. Renal physiology.

[141]  P. Nelson,et al.  TNFR2 interposes the proliferative and NF-κB-mediated inflammatory response by podocytes to TNF-α , 2010, Laboratory Investigation.

[142]  S. Kersten,et al.  Podocyte secreted Angiopoietin-like 4 mediates proteinuria in glucocorticoid sensitive nephrotic syndrome , 2010, Nature Medicine.

[143]  G. Eknoyan Obesity and chronic kidney disease. , 2011, Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia.

[144]  J. Hartwig,et al.  Direct dynamin–actin interactions regulate the actin cytoskeleton , 2010, The EMBO journal.

[145]  V. Savin,et al.  Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. , 2010, Clinical journal of the American Society of Nephrology : CJASN.

[146]  E. Schon,et al.  Prkdc participates in mitochondrial genome maintenance and prevents Adriamycin-induced nephropathy in mice. , 2010, The Journal of clinical investigation.

[147]  M. Saleem,et al.  Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes , 2010, Molecular and Cellular Endocrinology.

[148]  A. Rozkalne,et al.  Antagonistic Regulation of Actin Dynamics and Cell Motility by TRPC5 and TRPC6 Channels , 2010, Science Signaling.

[149]  D. Powell,et al.  Requirement for Class II Phosphoinositide 3-Kinase C2α in Maintenance of Glomerular Structure and Function , 2010, Molecular and Cellular Biology.

[150]  C. Kahn,et al.  Insulin signaling to the glomerular podocyte is critical for normal kidney function. , 2010, Cell metabolism.

[151]  Feng Chen,et al.  Activation of NFAT signaling in podocytes causes glomerulosclerosis. , 2010, Journal of the American Society of Nephrology : JASN.

[152]  C. Englert,et al.  Cofilin-1 Inactivation Leads to Proteinuria – Studies in Zebrafish, Mice and Humans , 2010, PloS one.

[153]  R. Inagi,et al.  Glomerular diseases: genetic causes and future therapeutics , 2010, Nature Reviews Nephrology.

[154]  Youhua Liu,et al.  Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. , 2010, Kidney international.

[155]  E. Lehtonen,et al.  beta-Catenin mediates adriamycin-induced albuminuria and podocyte injury in adult mouse kidneys. , 2010, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[156]  C. Cohen,et al.  Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. , 2010, American journal of physiology. Renal physiology.

[157]  B. Steenhard,et al.  Deletion of von Hippel-Lindau in glomerular podocytes results in glomerular basement membrane thickening, ectopic subepithelial deposition of collagen {alpha}1{alpha}2{alpha}1(IV), expression of neuroglobin, and proteinuria. , 2010, The American journal of pathology.

[158]  Feng-Sheng Wang,et al.  Modulation of Notch-1 Signaling Alleviates Vascular Endothelial Growth Factor–Mediated Diabetic Nephropathy , 2010, Diabetes.

[159]  S. Nakajima,et al.  Suppression of nephrin expression by TNF-alpha via interfering with the cAMP-retinoic acid receptor pathway. , 2010, American journal of physiology. Renal physiology.

[160]  B. Ballermann,et al.  CLIC5A, a component of the ezrin-podocalyxin complex in glomeruli, is a determinant of podocyte integrity. , 2010, American journal of physiology. Renal physiology.

[161]  K. Hiromura,et al.  The Immunosuppressive Drug Mizoribine Directly Prevents Podocyte Injury in Puromycin Aminonucleoside Nephrosis , 2010, Nephron Experimental Nephrology.

[162]  P. Singhal,et al.  ANG II promotes autophagy in podocytes. , 2010, American journal of physiology. Cell physiology.

[163]  K. Dahan,et al.  c-mip Impairs Podocyte Proximal Signaling and Induces Heavy Proteinuria , 2010, Science Signaling.

[164]  L. Holzman,et al.  Actin-depolymerizing Factor Cofilin-1 Is Necessary in Maintaining Mature Podocyte Architecture* , 2010, The Journal of Biological Chemistry.

[165]  A. Kistler,et al.  Toward the development of podocyte-specific drugs. , 2010, Kidney international.

[166]  P. Mundel,et al.  Proteinuria: an enzymatic disease of the podocyte? , 2010, Kidney international.

[167]  C. Cohen,et al.  Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. , 2010, The Journal of clinical investigation.

[168]  Hua-feng Liu,et al.  Thiazolidinedione attenuate proteinuria and glomerulosclerosis in Adriamycin‐induced nephropathy rats via slit diaphragm protection , 2010, Nephrology.

[169]  Youhua Liu New insights into epithelial-mesenchymal transition in kidney fibrosis. , 2010, Journal of the American Society of Nephrology : JASN.

[170]  H. Haller,et al.  The balance of autocrine VEGF-A and VEGF-C determines podocyte survival. , 2009, American journal of physiology. Renal physiology.

[171]  F. Hildebrandt,et al.  A Novel TRPC6 Mutation That Causes Childhood FSGS , 2009, PloS one.

[172]  R. Iyengar,et al.  Reduction of Stat3 activity attenuates HIV-induced kidney injury. , 2009, Journal of the American Society of Nephrology : JASN.

[173]  D. Stolz,et al.  Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. , 2009, Journal of the American Society of Nephrology : JASN.

[174]  M. Farquhar,et al.  Slit diaphragms contain tight junction proteins. , 2009, Journal of the American Society of Nephrology : JASN.

[175]  T. Pawson,et al.  Nck proteins maintain the adult glomerular filtration barrier. , 2009, Journal of the American Society of Nephrology : JASN.

[176]  L. V. D. Heuvel,et al.  Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review , 2009, European Journal of Pediatrics.

[177]  M. Kretzler,et al.  Urine podocyte mRNAs mark progression of renal disease. , 2009, Journal of the American Society of Nephrology : JASN.

[178]  G. Walz,et al.  Loss of podocyte aPKClambda/iota causes polarity defects and nephrotic syndrome. , 2009, Journal of the American Society of Nephrology : JASN.

[179]  R. Carrasquillo,et al.  TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. , 2009, American journal of physiology. Cell physiology.

[180]  H. Schnaper,et al.  Advances in the biology and genetics of the podocytopathies: implications for diagnosis and therapy. , 2009, Archives of pathology & laboratory medicine.

[181]  M. Carini,et al.  Regeneration of glomerular podocytes by human renal progenitors. , 2009, Journal of the American Society of Nephrology : JASN.

[182]  B. Smeets,et al.  Recruitment of podocytes from glomerular parietal epithelial cells. , 2009, Journal of the American Society of Nephrology : JASN.

[183]  K. Jirström,et al.  CRIM1 is localized to the podocyte filtration slit diaphragm of the adult human kidney , 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[184]  D. Satoh,et al.  An Essential Role of the Universal Polarity Protein, aPKCλ, on the Maintenance of Podocyte Slit Diaphragms , 2009, PloS one.

[185]  Ying Sun,et al.  Glomerular Transcriptome Changes Associated with Lipopolysaccharide-Induced Proteinuria , 2009, American Journal of Nephrology.

[186]  F. Braet,et al.  Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier , 2009, American journal of physiology. Renal physiology.

[187]  R. Flavell,et al.  Disruption of Myosin 1e promotes podocyte injury. , 2009, Journal of the American Society of Nephrology : JASN.

[188]  L. Ashman,et al.  Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. , 2008, The American journal of pathology.

[189]  Li-jia Wang,et al.  Simvastatin ameliorates glomerulosclerosis in Adriamycin-induced-nephropathy rats , 2008, Pediatric Nephrology.

[190]  Kwanghee Kim,et al.  The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A , 2008, Nature Medicine.

[191]  L. Barisoni,et al.  Current views on collapsing glomerulopathy. , 2008, Journal of the American Society of Nephrology : JASN.

[192]  B. Zhivotovsky,et al.  Death through a tragedy: mitotic catastrophe , 2008, Cell Death and Differentiation.

[193]  C. Lobe,et al.  Ectopic notch activation in developing podocytes causes glomerulosclerosis. , 2008, Journal of the American Society of Nephrology : JASN.

[194]  Tadashi Yamamoto,et al.  Claudin-6 localized in tight junctions of rat podocytes. , 2008, American journal of physiology. Regulatory, integrative and comparative physiology.

[195]  M. Nangaku,et al.  Dexamethasone’s Prosurvival Benefits in Podocytes Require Extracellular Signal-Regulated Kinase Phosphorylation , 2008, Nephron Experimental Nephrology.

[196]  A. Pozzi,et al.  Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. , 2008, Developmental biology.

[197]  S. Shibata,et al.  Podocyte Injury Induced by Albumin Overload in vivo and in vitro: Involvement of TGF-Beta and p38 MAPK , 2008, Nephron Experimental Nephrology.

[198]  F. Lai,et al.  Activation of podocytes by mesangial-derived TNF-alpha: glomerulo-podocytic communication in IgA nephropathy. , 2008, American journal of physiology. Renal physiology.

[199]  Jenny Nyström,et al.  Properties of the Glomerular Barrier and Mechanisms of Proteinuria , 2022 .

[200]  R. Iyengar,et al.  HIV-1 Nef Disrupts the Podocyte Actin Cytoskeleton by Interacting with Diaphanous Interacting Protein* , 2008, Journal of Biological Chemistry.

[201]  R. D'Hooge,et al.  Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. , 2008, American journal of human genetics.

[202]  K. Suszták,et al.  The Notch pathway in podocytes plays a role in the development of glomerular disease , 2008, Nature Medicine.

[203]  Youhua Liu,et al.  Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. , 2008, The American journal of pathology.

[204]  P. Singhal,et al.  Angiotensin II Infusion Induces Nephrin Expression Changes and Podocyte Apoptosis , 2008, American Journal of Nephrology.

[205]  V. LeBleu,et al.  Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. , 2008, Developmental biology.

[206]  M. Gubler Inherited diseases of the glomerular basement membrane , 2008, Nature Clinical Practice Nephrology.

[207]  P. Carmeliet,et al.  Modification of kidney barrier function by the urokinase receptor , 2008, Nature Medicine.

[208]  K. Hruska,et al.  Bone morphogenetic protein-7 delays podocyte injury due to high glucose. , 2007, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[209]  Grace M Mitu,et al.  BMP7 is a podocyte survival factor and rescues podocytes from diabetic injury. , 2007, American journal of physiology. Renal physiology.

[210]  C. Esmon,et al.  Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis , 2007, Nature Medicine.

[211]  L. Holzman,et al.  Neph1 Cooperates with Nephrin To Transduce a Signal That Induces Actin Polymerization , 2007, Molecular and Cellular Biology.

[212]  E. Bertini,et al.  COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. , 2007, Journal of the American Society of Nephrology : JASN.

[213]  V. Haase,et al.  Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. , 2007, American journal of physiology. Renal physiology.

[214]  M. Daha,et al.  Complement in glomerular injury , 2007, Seminars in Immunopathology.

[215]  M. Nangaku,et al.  Podocyte protection by darbepoetin: preservation of the cytoskeleton and nephrin expression. , 2007, Kidney international.

[216]  A. Rudensky,et al.  Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. , 2007, The Journal of clinical investigation.

[217]  R. Wiggins,et al.  The spectrum of podocytopathies: a unifying view of glomerular diseases. , 2007, Kidney international.

[218]  B. Galeano,et al.  Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. , 2007, The Journal of clinical investigation.

[219]  H. Schnaper,et al.  A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. , 2007, Clinical journal of the American Society of Nephrology : CJASN.

[220]  S. Chugh Transcriptional regulation of podocyte disease. , 2007, Translational research : the journal of laboratory and clinical medicine.

[221]  Randy L. Johnson,et al.  The podocyte-specific inactivation of Lmx1b, Ldb1 and E2a yields new insight into a transcriptional network in podocytes. , 2007, Developmental biology.

[222]  T. Ogihara,et al.  Snail, a transcriptional regulator, represses nephrin expression in glomerular epithelial cells of nephrotic rats , 2007, Laboratory Investigation.

[223]  H. Kawachi,et al.  Podocyte as the Target for Aldosterone: Roles of Oxidative Stress and Sgk1 , 2007, Hypertension.

[224]  M. Rastaldi,et al.  Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. , 2007, Journal of the American Society of Nephrology : JASN.

[225]  M. Kretzler,et al.  TGF-beta1 regulates the PINCH-1-integrin-linked kinase-alpha-parvin complex in glomerular cells. , 2007, Journal of the American Society of Nephrology : JASN.

[226]  Y. Kanwar,et al.  ZHX Proteins Regulate Podocyte Gene Expression during the Development of Nephrotic Syndrome* , 2006, Journal of Biological Chemistry.

[227]  Peter Nürnberg,et al.  Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible , 2006, Nature Genetics.

[228]  S. Shankland,et al.  Puromycin aminonucleoside induces oxidant-dependent DNA damage in podocytes in vitro and in vivo. , 2006, Kidney international.

[229]  G. Remuzzi,et al.  Shigatoxin-induced endothelin-1 expression in cultured podocytes autocrinally mediates actin remodeling. , 2006, The American journal of pathology.

[230]  滋郎 中島 海外文献紹介:Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes , 2006 .

[231]  C. Zeng,et al.  Podocyte lesions in patients with obesity-related glomerulopathy. , 2006, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[232]  A. Sonnenberg,et al.  Kidney failure in mice lacking the tetraspanin CD151 , 2006, The Journal of cell biology.

[233]  D. Fine,et al.  Antiretroviral therapy in the treatment of HIV-associated nephropathy. , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[234]  T. Ha High glucose and advanced glycosylated end‐products affect the expression of α‐actinin‐4 in glomerular epithelial cells , 2006, Nephrology.

[235]  Li-jun Ma,et al.  HIV-1 genes vpr and nef synergistically damage podocytes, leading to glomerulosclerosis. , 2006, Journal of the American Society of Nephrology : JASN.

[236]  Matthias Kretzler,et al.  Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice , 2006, Nature Medicine.

[237]  D. Stolz,et al.  Essential role of integrin-linked kinase in podocyte biology: Bridging the integrin and slit diaphragm signaling. , 2006, Journal of the American Society of Nephrology : JASN.

[238]  J. D. Engel,et al.  MafB Is Essential for Renal Development and F4/80 Expression in Macrophages , 2006, Molecular and Cellular Biology.

[239]  M. Farquhar The glomerular basement membrane: not gone, just forgotten. , 2006, The Journal of clinical investigation.

[240]  A. Shaw,et al.  Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. , 2006, The Journal of clinical investigation.

[241]  H. Haller,et al.  IGF-binding protein-3 modulates TGF-beta/BMP-signaling in glomerular podocytes. , 2006, Journal of the American Society of Nephrology : JASN.

[242]  Yasuhiko Tomino,et al.  Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling , 2006, Nature Cell Biology.

[243]  L. Holzman,et al.  Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. , 2006, The Journal of clinical investigation.

[244]  K. Blumer,et al.  Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. , 2006, The Journal of clinical investigation.

[245]  Matthias Kretzler,et al.  Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. , 2006, Journal of the American Society of Nephrology : JASN.

[246]  Ying Sun,et al.  Large‐scale identification of genes implicated in kidney glomerulus development and function , 2006, The EMBO journal.

[247]  S. Harper,et al.  VEGF-C promotes survival in podocytes. , 2006, American journal of physiology. Renal physiology.

[248]  S. Shibata,et al.  Fluvastatin ameliorates podocyte injury in proteinuric rats via modulation of excessive Rho signaling. , 2006, Journal of the American Society of Nephrology : JASN.

[249]  J. Rossant,et al.  Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. , 2006, Journal of the American Society of Nephrology : JASN.

[250]  Hernan Rincon-Choles,et al.  Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. , 2006, American journal of physiology. Renal physiology.

[251]  K. Chaisson,et al.  FSGS-associated alpha-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. , 2006, Kidney international.

[252]  M. Schiffer,et al.  Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. , 2006, Diabetes.

[253]  D. Cha,et al.  High glucose and angiotensin II increase β1 integrin and integrin-linked kinase synthesis in cultured mouse podocytes , 2006, Cell and Tissue Research.

[254]  D. Clapham,et al.  TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function , 2005, Nature Genetics.

[255]  W. Ju,et al.  TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. , 2005, Journal of the American Society of Nephrology : JASN.

[256]  J. Weinstein,et al.  Rapid isolation of glomeruli coupled with gene expression profiling identifies downstream targets in Pod1 knockout mice. , 2005, Journal of the American Society of Nephrology : JASN.

[257]  S. Shankland,et al.  The cyclin-dependent kinase inhibitor p21 is required for TGF-β1-induced podocyte apoptosis , 2005 .

[258]  Andrey V Cybulsky,et al.  Experimental membranous nephropathy redux. , 2005, American journal of physiology. Renal physiology.

[259]  L. Holzman,et al.  Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. , 2005, Journal of the American Society of Nephrology : JASN.

[260]  S. Shankland,et al.  Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. , 2005, Journal of the American Society of Nephrology : JASN.

[261]  Matthias Kretzler,et al.  Formation and phosphorylation of the PINCH-1-integrin linked kinase-alpha-parvin complex are important for regulation of renal glomerular podocyte adhesion, architecture, and survival. , 2005, Journal of the American Society of Nephrology : JASN.

[262]  S. Shankland,et al.  ATRA induces podocyte differentiation and alters nephrin and podocin expression in vitro and in vivo. , 2005, Kidney international.

[263]  G. Camussi,et al.  Statins prevent oxidized LDL-induced injury of glomerular podocytes by activating the phosphatidylinositol 3-kinase/AKT-signaling pathway. , 2005, Journal of the American Society of Nephrology : JASN.

[264]  M. Pericak-Vance,et al.  A Mutation in the TRPC6 Cation Channel Causes Familial Focal Segmental Glomerulosclerosis , 2005, Science.

[265]  Thomas Benzing,et al.  The slit diaphragm: a signaling platform to regulate podocyte function , 2005, Current opinion in nephrology and hypertension.

[266]  K. Tryggvason,et al.  How does the kidney filter plasma? , 2005, Physiology.

[267]  J. Wetzels,et al.  Mitochondrial tRNALeu(UUR) mutation in a patient with steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis. , 2005, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[268]  W. Kriz,et al.  Pathways to nephron loss starting from glomerular diseases-insights from animal models. , 2005, Kidney international.

[269]  M. Rastaldi,et al.  Functional consequences of integrin-linked kinase activation in podocyte damage. , 2005, Kidney international.

[270]  K. Asanuma,et al.  Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. , 2005, The Journal of clinical investigation.

[271]  S. Harper,et al.  Vascular endothelial growth factor and nephrin interact and reduce apoptosis in human podocytes. , 2005, American journal of physiology. Renal physiology.

[272]  N. Burton,et al.  CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. , 2004, Blood.

[273]  B. Hudson,et al.  The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. , 2004, Journal of the American Society of Nephrology : JASN.

[274]  R. Iyengar,et al.  Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. , 2004, The Journal of clinical investigation.

[275]  A. Shaw,et al.  A Novel Role for the Adaptor Molecule CD2-associated Protein in Transforming Growth Factor-β-induced Apoptosis* , 2004, Journal of Biological Chemistry.

[276]  Y. Tomino,et al.  Podocyte Migration during Nephrotic Syndrome Requires a Coordinated Interplay between Cathepsin L and α3 Integrin* , 2004, Journal of Biological Chemistry.

[277]  W. Vogel,et al.  DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. , 2004, Kidney international.

[278]  R. Kalluri,et al.  Induction of B7-1 in podocytes is associated with nephrotic syndrome. , 2004, The Journal of clinical investigation.

[279]  V. D’Agati,et al.  Reversal of collapsing glomerulopathy in mice with the cyclin-dependent kinase inhibitor CYC202. , 2004, Journal of the American Society of Nephrology : JASN.

[280]  Guido Kroemer,et al.  Cell death by mitotic catastrophe: a molecular definition , 2004, Oncogene.

[281]  N. Munshi,et al.  Podocyte injury associated glomerulopathies induced by pamidronate. , 2004, Kidney international.

[282]  M. Kretzler,et al.  Early Glomerular Filtration Defect and Severe Renal Disease in Podocin-Deficient Mice , 2004, Molecular and Cellular Biology.

[283]  Y. Tomino,et al.  The development of focal segmental glomerulosclerosis in Masugi nephritis is based on progressive podocyte damage , 1996, Virchows Archiv.

[284]  J. Bertram,et al.  In vitro effects of puromycin aminonucleoside on the ultrastructure of rat glomerular podocytes , 2004, Cell and Tissue Research.

[285]  M. Le Hir,et al.  J Am Soc Nephrol 15: 61–67, 2004 Podocytes Populate Cellular Crescents in a Murine Model of Inflammatory Glomerulonephritis , 2003 .

[286]  T. Benzing,et al.  Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. , 2003, Human molecular genetics.

[287]  K. Asanuma,et al.  The role of podocytes in glomerular pathobiology , 2003, Journal of Clinical and Experimental Nephrology.

[288]  Tatsuo Sakai,et al.  Actin Filament Organization of Foot Processes in Rat Podocytes , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[289]  J. He,et al.  Critical role for Nef in HIV-1-induced podocyte dedifferentiation. , 2003, Kidney international.

[290]  N. Hastie,et al.  Murine Denys-Drash syndrome: evidence of podocyte de-differentiation and systemic mediation of glomerulosclerosis. , 2003, Human molecular genetics.

[291]  S. Shankland,et al.  Podocyte proliferation and differentiation in glomerular disease: role of cell-cycle regulatory proteins. , 2003, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[292]  G. Remuzzi,et al.  Targeted Downregulation of Extracellular Nephrin in Human IgA Nephropathy , 2003, American Journal of Nephrology.

[293]  K. Tryggvason,et al.  Alport's syndrome, Goodpasture's syndrome, and type IV collagen. , 2003, The New England journal of medicine.

[294]  L. Holzman,et al.  Fyn Binds to and Phosphorylates the Kidney Slit Diaphragm Component Nephrin* , 2003, Journal of Biological Chemistry.

[295]  D. Gillatt,et al.  Functional evidence that vascular endothelial growth factor may act as an autocrine factor on human podocytes. , 2003, American journal of physiology. Renal physiology.

[296]  E. Unanue,et al.  CD2-Associated Protein Haploinsufficiency Is Linked to Glomerular Disease Susceptibility , 2003, Science.

[297]  C. ffrench-Constant,et al.  Mice Lacking the Giant Protocadherin mFAT1 Exhibit Renal Slit Junction Abnormalities and a Partially Penetrant Cyclopia and Anophthalmia Phenotype , 2003, Molecular and Cellular Biology.

[298]  B. Vanderhyden,et al.  Focal and Segmental Glomerulosclerosis in Mice with Podocyte-Specific Expression of Mutant α-Actinin-4 , 2003 .

[299]  J. Haigh,et al.  Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. , 2003, The Journal of clinical investigation.

[300]  M. Pollak The genetic basis of FSGS and steroid-resistant nephrosis. , 2003, Seminars in nephrology.

[301]  G. Appel,et al.  Collapsing glomerulopathy. , 2003, Seminars in nephrology.

[302]  R. Gerszten,et al.  Mice deficient in alpha-actinin-4 have severe glomerular disease. , 2003, The Journal of clinical investigation.

[303]  Matthias Kretzler,et al.  Cell biology of the glomerular podocyte. , 2003, Physiological reviews.

[304]  G. Barsh,et al.  The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. , 2002, Developmental biology.

[305]  R. Kalluri,et al.  Effects of high glucose and TGF-beta1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. , 2002, Kidney international.

[306]  H. Rennke,et al.  Collapsing glomerulopathy--a new pattern of renal injury. , 2002, Seminars in diagnostic pathology.

[307]  M. Gubler,et al.  Dysregulation of Podocyte Phenotype in Idiopathic Collapsing Glomerulopathy and HIV-Associated Nephropathy , 2002, Nephron.

[308]  G. Gusella,et al.  HIV-1 Nef induces proliferation and anchorage-independent growth in podocytes. , 2002, Journal of the American Society of Nephrology : JASN.

[309]  B. Kasinath,et al.  Angiotensin II induces apoptosis in rat glomerular epithelial cells. , 2002, American journal of physiology. Renal physiology.

[310]  M. Kretzler Regulation of adhesive interaction between podocytes and glomerular basement membrane , 2002, Microscopy research and technique.

[311]  W. Kriz Podocyte is the major culprit accounting for the progression of chronic renal disease , 2002, Microscopy research and technique.

[312]  Randy L. Johnson,et al.  The LIM-homeodomain transcription factor Lmx1b plays a crucial role in podocytes. , 2002, The Journal of clinical investigation.

[313]  C. Antignac,et al.  Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. , 2002, The Journal of clinical investigation.

[314]  Kevin V Lemley,et al.  Podocytopenia and disease severity in IgA nephropathy. , 2002, Kidney international.

[315]  A. Schedl,et al.  WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. , 2002, Human molecular genetics.

[316]  M. Rogalińska Alterations in cell nuclei during apoptosis. , 2002, Cellular & molecular biology letters.

[317]  M. Le Hir,et al.  Podocyte bridges between the tuft and Bowman's capsule: an early event in experimental crescentic glomerulonephritis. , 2001, Journal of the American Society of Nephrology : JASN.

[318]  Y. H. Kim,et al.  Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. , 2001, Kidney international.

[319]  R. Wanke,et al.  Integrin linked kinase as a candidate downstream effector in proteinuria , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[320]  R. Ramirez-Solis,et al.  Proteinuria and Perinatal Lethality in Mice Lacking NEPH1, a Novel Protein with Homology to NEPHRIN , 2001, Molecular and Cellular Biology.

[321]  T. Graf,et al.  Anuria, Omphalocele, and Perinatal Lethality in Mice Lacking the Cd34-Related Protein Podocalyxin , 2001, The Journal of experimental medicine.

[322]  R. Witzgall,et al.  Update in podocyte biology , 2001, Current opinion in nephrology and hypertension.

[323]  A. Winterpacht,et al.  Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome , 2001, Nature Genetics.

[324]  A. DeFranco,et al.  Lupus-like kidney disease in mice deficient in the Src family tyrosine kinases Lyn and Fyn , 2001, Current Biology.

[325]  M. Bitzer,et al.  Apoptosis in podocytes induced by TGF-beta and Smad7. , 2001, The Journal of clinical investigation.

[326]  K. Tryggvason,et al.  The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. , 2001, Human molecular genetics.

[327]  L. Holzman,et al.  Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice associated with hypertension and low glomerular filtration rate. , 2000, The Journal of clinical investigation.

[328]  Y. Wang,et al.  Progressive adriamycin nephropathy in mice: sequence of histologic and immunohistochemical events. , 2000, Kidney international.

[329]  V. D’Agati,et al.  Congenital focal segmental glomerulosclerosis associated with beta4 integrin mutation and epidermolysis bullosa. , 2000, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[330]  P. Stricklett,et al.  Cytotoxic effect of Shiga toxin-1 on human glomerular epithelial cells. , 2000, Kidney international.

[331]  F. Pixley,et al.  Regulation of mouse podocyte process dynamics by protein tyrosine phosphatases rapid communication. , 2000, Kidney international.

[332]  Corinne Antignac,et al.  NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome , 2000, Nature Genetics.

[333]  D. Kerjaschki,et al.  Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. , 2000, Journal of the American Society of Nephrology : JASN.

[334]  J. Kaplan,et al.  Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. , 2000, Nature genetics.

[335]  M. Kretzler,et al.  The glomerular slit diaphragm is a modified adherens junction. , 2000, Journal of the American Society of Nephrology : JASN.

[336]  H. Pavenstädt,et al.  Polycations induce calcium signaling in glomerular podocytes. , 1999, Kidney international.

[337]  S. Ito,et al.  Nephrotic syndrome and end-stage renal disease with WT1 mutation detected at 3 years , 1999, Pediatric Nephrology.

[338]  Michael Loran Dustin,et al.  Congenital nephrotic syndrome in mice lacking CD2-associated protein. , 1999, Science.

[339]  S. Nishikawa,et al.  Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIα , 1999, Oncogene.

[340]  Y. G. Kim,et al.  The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis. , 1999, Kidney international.

[341]  D. Salant,et al.  Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions. , 1999, Kidney international.

[342]  B. Ryffel,et al.  Prevention of crescentic glomerulonephritis induced by anti-glomerular membrane antibody in tumor necrosis factor-deficient mice. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[343]  W. Couser,et al.  Role of intrinsic renal cells versus infiltrating cells in glomerular crescent formation. , 1998, Kidney international.

[344]  T. Chou,et al.  Experimental Focal Segmental Glomerulosclerosis in Mice , 1998, Nephron.

[345]  L Peltonen,et al.  Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. , 1998, Molecular cell.

[346]  D. Ovchinnikov,et al.  Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome , 1998, Nature Genetics.

[347]  R. Jaenisch,et al.  Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. , 1996, Development.

[348]  E. Vimr,et al.  In vivo enzymatic removal of alpha 2-->6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[349]  S. Swan,et al.  Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. , 1996, The New England journal of medicine.

[350]  Kenjiro,et al.  Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. , 1996, The American journal of pathology.

[351]  D. Templeton,et al.  High glucose alters actin assembly in glomerular mesangial and epithelial cells. , 1995, Laboratory investigation; a journal of technical methods and pathology.

[352]  S. Carroll,et al.  Spontaneous premature chromosome condensation, micronucleus formation, and non-apoptotic cell death in heated HeLa S3 cells. Ultrastructural observations. , 1995, The American journal of pathology.

[353]  Y. Komatsu,et al.  Mitosis and the presence of binucleate cells among glomerular podocytes in diseased human kidneys. , 1995, Nephron.

[354]  J. Sanes,et al.  The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. , 1995, Nature genetics.

[355]  W. Lee,et al.  Induction of proteinuria by adriamycin or bovine serum albumin in the mouse. , 1995, Nephron.

[356]  B. S. Daniels,et al.  Increased albumin permeability in vitro following alterations of glomerular charge is mediated by the cells of the filtration barrier. , 1994, The Journal of laboratory and clinical medicine.

[357]  R. Falk,et al.  Collapsing glomerulopathy: a clinically and pathologically distinct variant of focal segmental glomerulosclerosis. , 1994, Kidney international.

[358]  W. Kriz,et al.  A role for podocytes to counteract capillary wall distension. , 1994, Kidney international.

[359]  C. Whiteside,et al.  Podocytic cytoskeletal disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. , 1993, The American journal of pathology.

[360]  P. Rossmann,et al.  Experimental adriamycin nephropathy. Fine structure, morphometry, glomerular polyanion, and cell membrane antigens , 1993, The Journal of pathology.

[361]  James M. Anderson,et al.  The altered glomerular filtration slits seen in puromycin aminonucleoside nephrosis and protamine sulfate-treated rats contain the tight junction protein ZO-1. , 1992, The American journal of pathology.

[362]  D. Appleton,et al.  Anti-glomerular basement membrane (GBM) glomerulonephritis in the mouse: development of disease and cell proliferation. , 1990, Journal of experimental pathology.

[363]  G. D'Amico,et al.  The commonest glomerulonephritis in the world: IgA nephropathy. , 1987, The Quarterly journal of medicine.

[364]  M. Fujishima,et al.  Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease. , 1986, Kidney international.

[365]  P. Zucchelli,et al.  [IgA nephropathy]. , 1985, Medicina clinica.

[366]  D. Kerjaschki,et al.  Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell , 1984, The Journal of cell biology.

[367]  G. Remuzzi,et al.  Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. , 1982, Laboratory investigation; a journal of technical methods and pathology.

[368]  P. Andrews Investigations of cytoplasmic contractile and cytoskeletal elements in the kidney glomerulus. , 1981, Kidney international.

[369]  P. Andrews Glomerular epithelial alterations resulting from sialic acid surface coat removal. , 1979, Kidney international.

[370]  D. Kerjaschki Polycation-induced dislocation of slit diaphragms and formation of cell junctions in rat kidney glomeruli: the effects of low temperature, divalent cations, colchicine, and cytochalasin B. , 1978, Laboratory investigation; a journal of technical methods and pathology.

[371]  R. Cotran,et al.  Pathogenesis of polycation-induced alterations ("fusion") of glomerular epithelium. , 1977, Laboratory investigation; a journal of technical methods and pathology.

[372]  R. Cotran,et al.  Glomerular epithelium: structural alterations induced by polycations. , 1975, Science.