Applications of Dissipative Supramolecular Materials with a Tunable Lifetime

[1]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[2]  S. Stupp,et al.  Supramolecular Materials: Self-Organized Nanostructures , 1997, Science.

[3]  Rein V. Ulijn,et al.  Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. , 2013, Journal of the American Chemical Society.

[4]  Ankit Jain,et al.  Transient Helicity: Fuel-Driven Temporal Control over Conformational Switching in a Supramolecular Polymer. , 2017, Angewandte Chemie.

[5]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[6]  D. Spitzer,et al.  Programmierbare transiente Thermogele vermittelt durch eine pH‐ und Redox‐regulierte supramolekulare Polymerisation , 2017 .

[7]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[8]  R. Shah,et al.  Supramolecular design of self-assembling nanofibers for cartilage regeneration , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Job Boekhoven,et al.  Dissipative self-assembly of a molecular gelator by using a chemical fuel. , 2010, Angewandte Chemie.

[10]  S. Maiti,et al.  Transient self-assembly of molecular nanostructures driven by chemical fuels. , 2017, Current opinion in biotechnology.

[11]  Bartosz A Grzybowski,et al.  Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. , 2010, Journal of the American Chemical Society.

[12]  Samuel I Stupp,et al.  Self-assembling peptide amphiphile nanofiber matrices for cell entrapment. , 2005, Acta biomaterialia.

[13]  H. Hess,et al.  Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. , 2017, Chemical Society reviews.

[14]  A. Bausch,et al.  Self-selection of dissipative assemblies driven by primitive chemical reaction networks , 2018, Nature Communications.

[15]  J. Boekhoven,et al.  Dissipative out-of-equilibrium assembly of man-made supramolecular materials. , 2017, Chemical Society reviews.

[16]  S. Leibler,et al.  Physical Properties Determining Self-Organization of Motors and Microtubules , 2001, Science.

[17]  S. Stupp,et al.  Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers , 2001, Science.

[18]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[19]  Bartosz A Grzybowski,et al.  Writing self-erasing images using metastable nanoparticle "inks". , 2009, Angewandte Chemie.

[20]  Mischa Zelzer,et al.  Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. , 2010, Chemical Society reviews.

[21]  A. Sato,et al.  Supramolecular pathway selection of perylenediimides mediated by chemical fuels. , 2016, Chemical communications.

[22]  Rein V Ulijn,et al.  Biocatalytic Pathway Selection in Transient Tripeptide Nanostructures. , 2015, Angewandte Chemie.

[23]  C. Hartley,et al.  Dissipative Assembly of Aqueous Carboxylic Acid Anhydrides Fueled by Carbodiimides. , 2017, Journal of the American Chemical Society.

[24]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[25]  Robert Langer,et al.  Supramolecular biomaterials. , 2016, Nature materials.

[26]  Jiwon Kim,et al.  Self-assembly: from crystals to cells , 2009 .

[27]  B. Escuder,et al.  Transient Catalytic Activity of a Triazole‐based Gelator Regulated by Molecular Gel Assembly/Disassembly , 2017 .

[28]  Kam W Leong,et al.  Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. , 2006, Biomaterials.

[29]  B. Feringa,et al.  University of Groningen Design and Application of Self-Assembled Low Molecular Weight Hydrogels , 2005 .

[30]  Bing Xu,et al.  Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. , 2009, Journal of the American Chemical Society.

[31]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[32]  Takatoshi Kinoshita,et al.  Dynamic reassembly of peptide RADA16 nanofiber scaffold. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Bartosz A Grzybowski,et al.  Principles and implementations of dissipative (dynamic) self-assembly. , 2006, The journal of physical chemistry. B.

[34]  Alessandro Sorrenti,et al.  Non-equilibrium steady states in supramolecular polymerization , 2017, Nature Communications.

[35]  Jindřich Kopeček,et al.  Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials , 2009 .

[36]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[37]  T. Heuser,et al.  Photonic Devices Out of Equilibrium: Transient Memory, Signal Propagation, and Sensing , 2017, Advanced materials.

[38]  J. Miravet,et al.  Sucrose-fueled, energy dissipative, transient formation of molecular hydrogels mediated by yeast activity. , 2016, Chemical communications.

[39]  Shikha Dhiman,et al.  Temporally Controlled Supramolecular Polymerization , 2018, Bulletin of the Chemical Society of Japan.

[40]  Karteek K. Bejagam,et al.  Biomimetic temporal self-assembly via fuel-driven controlled supramolecular polymerization , 2018, Nature Communications.

[41]  Krista L. Niece,et al.  Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers , 2004, Science.

[42]  Tom F. A. de Greef,et al.  Non-equilibrium supramolecular polymerization , 2017, Chemical Society reviews.

[43]  Andreas Walther,et al.  Biocatalytic Feedback-Driven Temporal Programming of Self-Regulating Peptide Hydrogels. , 2015, Angewandte Chemie.

[44]  A. Bausch,et al.  Non-equilibrium dissipative supramolecular materials with a tunable lifetime , 2017, Nature Communications.

[45]  G. Schatz,et al.  Energy landscapes and function of supramolecular systems , 2015, Nature materials.

[46]  Andreas Walther,et al.  Generic concept to program the time domain of self-assemblies with a self-regulation mechanism. , 2015, Nano letters.

[47]  Ankit Jain,et al.  Adenosine-Phosphate-Fueled, Temporally Programmed Supramolecular Polymers with Multiple Transient States. , 2017, Journal of the American Chemical Society.

[48]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[49]  Petr Král,et al.  Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. , 2016, Nature Nanotechnology.

[50]  Alexander V Kabanov,et al.  Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic block copolymers. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[51]  J. V. Esch We can design molecular gelators, but do we understand them? , 2009 .

[52]  S. Maiti,et al.  Dissipative self-assembly of vesicular nanoreactors. , 2016, Nature chemistry.

[53]  Lifeng Zhang,et al.  Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers , 1995, Science.

[54]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[55]  John B. Matson,et al.  Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. , 2012, Biomaterials.

[56]  Markus Mezger,et al.  Tuneable Transient Thermogels Mediated by a pH- and Redox-Regulated Supramolecular Polymerization. , 2017, Angewandte Chemie.

[57]  Job Boekhoven,et al.  Transient assembly of active materials fueled by a chemical reaction , 2015, Science.

[58]  E. W. Meijer,et al.  A modular and supramolecular approach to bioactive scaffolds for tissue engineering , 2005, Nature materials.