GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits

[1]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[2]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description , 1976, Journal of neurocytology.

[3]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[4]  E. White,et al.  A comparison of thalamocortical and other synaptic inputs to dendrites of two non‐spiny neurons in a single barrel of mouse SmI cortex , 1981, The Journal of comparative neurology.

[5]  A. Alonso,et al.  Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain , 1982, Neuroscience Letters.

[6]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P. Somogyi,et al.  Glutamate decarboxylase‐immunoreactive terminals of Golgi‐impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex , 1983, The Journal of comparative neurology.

[8]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[9]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[10]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  D. Whitteridge,et al.  Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat , 1985, The Journal of comparative neurology.

[12]  P. Somogyi,et al.  Synaptic connections, axonal and dendritic patterns of neurons immunoreactive for cholecystokinin in the visual cortex of the cat , 1986, Neuroscience.

[13]  E. White,et al.  Intrinsic circuitry involving the local axon collaterals of corticothalamic projection cells in mouse SmI cortex , 1987, The Journal of comparative neurology.

[14]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[15]  Larry W. Swanson,et al.  Cajal on the Cerebral Cortex: An Annotated Translation of the Complete Writings , 1988 .

[16]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[17]  D. Pow,et al.  Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis , 1989, Neuroscience.

[18]  J. Morrison,et al.  Ultrastructural analysis of somatostatin‐immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[19]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[20]  R. Miles,et al.  Variation in strength of inhibitory synapses in the CA3 region of guinea‐pig hippocampus in vitro. , 1990, The Journal of physiology.

[21]  P. Somogyi,et al.  Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. , 1990, Brain : a journal of neurology.

[22]  A. Peters The axon terminals of vasoactive intestinal polypeptide (VIP)-containing bipolar cells in rat visual cortex , 1990, Journal of neurocytology.

[23]  H. Groenewegen,et al.  Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat , 1991, Neuroscience.

[24]  Valentino Braitenberg,et al.  Peters’ Rule and White’s Exceptions , 1991 .

[25]  D. Pow,et al.  Widespread release of peptides in the central nervous system: Quantitation of tannic acid‐captured exocytoses , 1991, The Anatomical record.

[26]  F. Krasne,et al.  Evidence for a computational distinction between proximal and distal neuronal inhibition. , 1992, Science.

[27]  Z. Kisvárday,et al.  GABAergic networks of basket cells in the visual cortex. , 1992, Progress in brain research.

[28]  U. Eysel,et al.  Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition , 1993, The Journal of comparative neurology.

[29]  L. Acsády,et al.  Calretinin is present in non-pyramidal cells of the rat hippocampus—III. Their inputs from the median raphe and medial septal nuclei , 1993, Neuroscience.

[30]  Z. Borhegyi,et al.  Postsynaptic targets of GABAergic hippocampal neurons in the medial septum-diagonal band of broca complex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  J. Parnavelas,et al.  The emergence of the cortical GABAergic neuron: with particular reference to some peptidergic subpopulations , 1993, Journal of neurocytology.

[32]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[33]  M. Freund-Mercier,et al.  Oxytocin receptors on oxytocin neurones: histoautoradiographic detection in the lactating rat. , 1994, The Journal of physiology.

[34]  I. Mody,et al.  Bridging the cleft at GABA synapses in the brain , 1994, Trends in Neurosciences.

[35]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[37]  C. Chavkin,et al.  L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells , 1995, Neuron.

[38]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[39]  K. Zilles,et al.  Distribution of GABAergic Elements Postsynaptic to Ventroposteromedial Thalamic Projections in Layer IV of Rat Barrel Cortex , 1996, The European journal of neuroscience.

[40]  S. Hestrin,et al.  Morphology and Physiology of Cortical Neurons in Layer I , 1996, The Journal of Neuroscience.

[41]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[42]  M. Castel,et al.  Non‐synaptic and dendritic exocytosis from dense‐cored vesicles in the suprachiasmatic nucleus , 1996, Neuroreport.

[43]  G. Zupanc Peptidergic transmission: from morphological correlates to functional implications. , 1996, Micron.

[44]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  L. Acsády,et al.  Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus , 1996, Neuroscience.

[46]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[47]  J. Deuchars,et al.  Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. , 1996, The Journal of physiology.

[48]  L. Acsády,et al.  Target Selectivity and Neurochemical Characteristics of VIP‐immunoreactive Interneurons in the Rat Dentate Gyrus , 1996, The European journal of neuroscience.

[49]  F. Zhou,et al.  Morphological properties of intracellularly labeled layer I neurons in rat neocortex , 1996, The Journal of comparative neurology.

[50]  C. Gray,et al.  Physiological properties of inhibitory interneurons in cat striate cortex. , 1997, Cerebral cortex.

[51]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[52]  A. Fergus,et al.  GABAergic Regulation of Cerebral Microvascular Tone in the Rat , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  P. Jonas,et al.  Functional differences in Na+ channel gating between fast‐spiking interneurones and principal neurones of rat hippocampus , 1997, The Journal of physiology.

[54]  S. Henriksen,et al.  Cortistatin Is Expressed in a Distinct Subset of Cortical Interneurons , 1997, The Journal of Neuroscience.

[55]  Yasuo Kawaguchi,et al.  Two distinct subgroups of cholecystokinin-immunoreactive cortical interneurons , 1997, Brain Research.

[56]  Maria V. Sanchez-Vives,et al.  Functional dynamics of GABAergic inhibition in the thalamus. , 1997, Science.

[57]  V. Meskenaite,et al.  Calretinin‐immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis , 1997, The Journal of comparative neurology.

[58]  Y. Kawaguchi,et al.  Selective cholinergic modulation of cortical GABAergic cell subtypes. , 1997, Journal of neurophysiology.

[59]  B. Gähwiler,et al.  Target cell-specific modulation of transmitter release at terminals from a single axon. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[61]  Y. Kawaguchi,et al.  Noradrenergic Excitation and Inhibition of GABAergic Cell Types in Rat Frontal Cortex , 1998, The Journal of Neuroscience.

[62]  Y. Kubota,et al.  Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex , 1998, Neuroscience.

[63]  J. Rossier,et al.  Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex , 1998, The European journal of neuroscience.

[64]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[65]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[66]  A. Erisir,et al.  Contributions of Kv3 Channels to Neuronal Excitability , 1999, Annals of the New York Academy of Sciences.

[67]  A. Burkhalter,et al.  Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. , 1999, Cerebral cortex.

[68]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[69]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[70]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[71]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[72]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[73]  A. Destexhe,et al.  Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices , 1999, Neuroscience.

[74]  P. Hof,et al.  Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns , 1999, Journal of Chemical Neuroanatomy.

[75]  G. Buzsáki,et al.  Unusual Target Selectivity of Perisomatic Inhibitory Cells in the Hilar Region of the Rat Hippocampus , 2000, The Journal of Neuroscience.

[76]  J. Rossier,et al.  Classification of fusiform neocortical interneurons based on unsupervised clustering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  E. Welker,et al.  Neurons immunoreactive for vasoactive intestinal polypeptide in the rat primary somatosensory cortex: Morphology and spatial relationship to barrel‐related columns , 2000, The Journal of comparative neurology.

[78]  D. Simons,et al.  Circuit dynamics and coding strategies in rodent somatosensory cortex. , 2000, Journal of neurophysiology.

[79]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[80]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[81]  T. Kaneko,et al.  A group of cortical interneurons expressing μ-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex , 2000, Neuroscience.

[82]  M. Scanziani GABA Spillover Activates Postsynaptic GABAB Receptors to Control Rhythmic Hippocampal Activity , 2000, Neuron.

[83]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[84]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[85]  B Sakmann,et al.  AMPA Receptor Channels with Long-Lasting Desensitization in Bipolar Interneurons Contribute to Synaptic Depression in a Novel Feedback Circuit in Layer 2/3 of Rat Neocortex , 2001, The Journal of Neuroscience.

[86]  Kevan A Martin Faculty Opinions recommendation of Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. , 2001 .

[87]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[88]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[89]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[90]  G. Alonso,et al.  Printed in U.S.A. Copyright © 2002 by The Endocrine Society The Vasopressin Receptors Colocalize with Vasopressin in the Magnocellular Neurons of the Rat Supraoptic Nucleus and Are Modulated by Water Balance , 2022 .

[91]  H. Swadlow,et al.  Receptive-field construction in cortical inhibitory interneurons , 2002, Nature Neuroscience.

[92]  P. Somogyi,et al.  Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus , 2002, Neuroscience.

[93]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[94]  Edith Hamel,et al.  5-HT3 Receptors Mediate Serotonergic Fast Synaptic Excitation of Neocortical Vasoactive Intestinal Peptide/Cholecystokinin Interneurons , 2002, The Journal of Neuroscience.

[95]  Gareth Leng,et al.  Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites , 2002, Nature.

[96]  B. Connors,et al.  The Spatial Dimensions of Electrically Coupled Networks of Interneurons in the Neocortex , 2002, The Journal of Neuroscience.

[97]  Javier DeFelipe,et al.  Cortical interneurons: from Cajal to 2001. , 2002, Progress in brain research.

[98]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[99]  S. Hestrin,et al.  Synaptic Interactions of Late-Spiking Neocortical Neurons in Layer 1 , 2003, The Journal of Neuroscience.

[100]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[101]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[102]  Andreas Burkhalter,et al.  Distinct GABAergic Targets of Feedforward and Feedback Connections Between Lower and Higher Areas of Rat Visual Cortex , 2003, The Journal of Neuroscience.

[103]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[104]  D. Simons,et al.  Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. , 2003, Cerebral cortex.

[105]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[106]  Kenneth D Harris,et al.  Selective Impairment of Hippocampal Gamma Oscillations in Connexin-36 Knock-Out Mouse In Vivo , 2003, The Journal of Neuroscience.

[107]  T. Hökfelt,et al.  Differential routing of coexisting neuropeptides in vasopressin neurons , 2003, The European journal of neuroscience.

[108]  M. Whittington,et al.  A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex , 2003, Neuron.

[109]  Differential routing of coexisting neuropeptides in vasopressin neurons , 2003 .

[110]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[111]  Jose-Manuel Alonso,et al.  Functionally distinct inhibitory neurons at the first stage of visual cortical processing , 2003, Nature Neuroscience.

[112]  S. Baraban,et al.  Interneuron Diversity series: Interneuronal neuropeptides – endogenous regulators of neuronal excitability , 2004, Trends in Neurosciences.

[113]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[114]  T. Kosaka,et al.  Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal pathway in mice , 2004, The Journal of comparative neurology.

[115]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[116]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[117]  F. Karube,et al.  Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes , 2004, The Journal of Neuroscience.

[118]  D. Whitteridge,et al.  Physiological and morphological properties of identified basket cells in the cat's visual cortex , 2004, Experimental Brain Research.

[119]  D. Simons,et al.  Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex. , 2004, Journal of neurophysiology.

[120]  J. Rossier,et al.  Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways , 2004, The Journal of Neuroscience.

[121]  A. Schleicher,et al.  Calbindin‐containing interneurons are a target for VIP‐immunoreactive synapses in rat primary somatosensory cortex , 2004, The Journal of comparative neurology.

[122]  H. Ozeki,et al.  Relationship between Excitation and Inhibition Underlying Size Tuning and Contextual Response Modulation in the Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[123]  Alex M. Thomson,et al.  Presynaptic Frequency- and Pattern-Dependent Filtering , 2003, Journal of Computational Neuroscience.

[124]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[125]  J. Zhu,et al.  Chandelier Cells Control Excessive Cortical Excitation: Characteristics of Whisker-Evoked Synaptic Responses of Layer 2/3 Nonpyramidal and Pyramidal Neurons , 2004, The Journal of Neuroscience.

[126]  T. Tsumoto,et al.  Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition , 1979, Experimental Brain Research.

[127]  S. Hestrin,et al.  Electrical Coupling among Irregular-Spiking GABAergic Interneurons Expressing Cannabinoid Receptors , 2004, The Journal of Neuroscience.

[128]  P. Somogyi,et al.  GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat , 2004, The European journal of neuroscience.

[129]  K. Toyama,et al.  An intracellular study of neuronal organization in the visual cortex , 2004, Experimental Brain Research.

[130]  G. Tamás,et al.  Gap-Junctional Coupling between Neurogliaform Cells and Various Interneuron Types in the Neocortex , 2005, The Journal of Neuroscience.

[131]  Ethan M. Goldberg,et al.  Specific Functions of Synaptically Localized Potassium Channels in Synaptic Transmission at the Neocortical GABAergic Fast-Spiking Cell Synapse , 2005, The Journal of Neuroscience.

[132]  Harvey A Swadlow,et al.  Thalamocortical specificity and the synthesis of sensory cortical receptive fields. , 2005, Journal of neurophysiology.

[133]  Brent Doiron,et al.  Deterministic Multiplicative Gain Control with Active Dendrites , 2005, The Journal of Neuroscience.

[134]  G. Tamás,et al.  Lighting the chandelier: new vistas for axo-axonic cells , 2005, Trends in Neurosciences.

[135]  R. Landgraf,et al.  Regulation of activity‐dependent dendritic vasopressin release from rat supraoptic neurones , 2005, The Journal of physiology.

[136]  B. Connors,et al.  Functional Properties of Electrical Synapses between Inhibitory Interneurons of Neocortical Layer 4 , 2022 .

[137]  Stéphane Charpier,et al.  Feedforward Inhibition of Projection Neurons by Fast-Spiking GABA Interneurons in the Rat Striatum In Vivo , 2005, The Journal of Neuroscience.

[138]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[139]  A. Zaitsev,et al.  Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. , 2005, Cerebral cortex.

[140]  Ken Mackie,et al.  Endocannabinoid Signaling in Rat Somatosensory Cortex: Laminar Differences and Involvement of Specific Interneuron Types , 2005, The Journal of Neuroscience.

[141]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[142]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[143]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[144]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[145]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[146]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[147]  S. Hestrin,et al.  Electrical synapses define networks of neocortical GABAergic neurons , 2005, Trends in Neurosciences.

[148]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[149]  E. Callaway,et al.  Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin , 2006, The Journal of comparative neurology.

[150]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[151]  D. Contreras,et al.  Balanced Excitation and Inhibition Determine Spike Timing during Frequency Adaptation , 2006, The Journal of Neuroscience.

[152]  Javier DeFelipe,et al.  Double-bouquet cells in the monkey and human cerebral cortex with special reference to areas 17 and 18. , 2006, Progress in brain research.

[153]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[154]  Tsuyoshi Inoue,et al.  Feedforward inhibitory connections from multiple thalamic cells to multiple regular-spiking cells in layer 4 of the somatosensory cortex. , 2006, Journal of neurophysiology.

[155]  Massimo Scanziani,et al.  Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells , 2006, Nature Neuroscience.

[156]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[157]  Ivan Soltesz,et al.  Different transmitter transients underlie presynaptic cell type specificity of GABAA,slow and GABAA,fast , 2007, Proceedings of the National Academy of Sciences.

[158]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[159]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[160]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[161]  Axel Schleicher,et al.  The innervation of parvalbumin‐containing interneurons by VIP‐immunopositive interneurons in the primary somatosensory cortex of the adult rat , 2007, The European journal of neuroscience.

[162]  A. Zaitsev,et al.  Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. , 2007, Journal of neurophysiology.

[163]  D. Lewis,et al.  P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. , 2007, Journal of neurophysiology.

[164]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[165]  I. Soltesz,et al.  Postsynaptic origin of CB1‐dependent tonic inhibition of GABA release at cholecystokinin‐positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus , 2007, The Journal of physiology.

[166]  Csaba Varga,et al.  HUMAN AND , 2022 .

[167]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[168]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[169]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[170]  T. Kaneko,et al.  Extensive overlap of mu-opioid and nicotinic sensitivity in cortical interneurons. , 2007, Cerebral cortex.

[171]  P. Jonas,et al.  Differential Gating and Recruitment of P/Q-, N-, and R-Type Ca2+ Channels in Hippocampal Mossy Fiber Boutons , 2007, The Journal of Neuroscience.

[172]  Y. Yanagawa,et al.  Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. , 2008, Cerebral cortex.

[173]  Maria V. Sanchez-Vives,et al.  Lack of orientation and direction selectivity in a subgroup of fast-spiking inhibitory interneurons: cellular and synaptic mechanisms and comparison with other electrophysiological cell types. , 2008, Cerebral cortex.

[174]  D. Rusakov,et al.  GABAB Receptor Modulation of Feedforward Inhibition through Hippocampal Neurogliaform Cells , 2008, The Journal of Neuroscience.

[175]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[176]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[177]  Z. Josh Huang,et al.  Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons , 2008, Proceedings of the National Academy of Sciences.

[178]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[179]  Moritz Helmstaedter,et al.  Efficient Recruitment of Layer 2/3 Interneurons by Layer 4 Input in Single Columns of Rat Somatosensory Cortex , 2008, The Journal of Neuroscience.

[180]  A. Thomson,et al.  Synaptic a 5 Subunit--Containing GABA A Receptors Mediate IPSPs Elicited by Dendrite-Preferring Cells in Rat Neocortex , 2008 .

[181]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[182]  Gilad Silberberg,et al.  Polysynaptic subcircuits in the neocortex: spatial and temporal diversity , 2008, Current Opinion in Neurobiology.

[183]  B. Rudy,et al.  Perisomatic GABA Release and Thalamocortical Integration onto Neocortical Excitatory Cells Are Regulated by Neuromodulators , 2008, Neuron.

[184]  D. Lewis,et al.  Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. , 2008, Journal of neurophysiology.

[185]  M. Frotscher,et al.  Nanodomain Coupling between Ca2+ Channels and Ca2+ Sensors Promotes Fast and Efficient Transmitter Release at a Cortical GABAergic Synapse , 2008, Neuron.

[186]  Ethan M. Goldberg,et al.  K+ Channels at the Axon Initial Segment Dampen Near-Threshold Excitability of Neocortical Fast-Spiking GABAergic Interneurons , 2008, Neuron.

[187]  Brent Doiron,et al.  Spatial Profile and Differential Recruitment of GABAB Modulate Oscillatory Activity in Auditory Cortex , 2009, The Journal of Neuroscience.

[188]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[189]  S. Jinno Structural Organization of Long-Range GABAergic Projection System of the Hippocampus , 2009, Front. Neuroanat..

[190]  Peter Jonas,et al.  Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons , 2009, Proceedings of the National Academy of Sciences.

[191]  A. Zaitsev,et al.  Interneuron diversity in layers 2-3 of monkey prefrontal cortex. , 2009, Cerebral cortex.

[192]  Court Hull,et al.  Postsynaptic Mechanisms Govern the Differential Excitation of Cortical Neurons by Thalamic Inputs , 2009, The Journal of Neuroscience.

[193]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[194]  Alex S. Ferecskó,et al.  The fractions of short- and long-range connections in the visual cortex , 2009, Proceedings of the National Academy of Sciences.

[195]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[196]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.

[197]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[198]  R. Yuste,et al.  Depolarizing effect of neocortical chandelier neurons , 2022 .

[199]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[200]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[201]  Ken Sugino,et al.  Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons , 2009, The Journal of Neuroscience.

[202]  Maria Blatow,et al.  Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. , 2009, Cerebral cortex.

[203]  P. Jonas,et al.  Dendritic Mechanisms Underlying Rapid Synaptic Activation of Fast-Spiking Hippocampal Interneurons , 2010, Science.

[204]  Norimitsu Suzuki,et al.  Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. , 2010, Cerebral cortex.

[205]  P. Jonas,et al.  A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse , 2010, Nature Neuroscience.

[206]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[207]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[208]  Garrett B. Stanley,et al.  Thalamic Synchrony and the Adaptive Gating of Information Flow to Cortex , 2010, Nature Neuroscience.

[209]  Li I. Zhang,et al.  Intervening Inhibition Underlies Simple-Cell Receptive Field Structure in Visual Cortex , 2009, Nature Neuroscience.

[210]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[211]  Li I. Zhang,et al.  Visual Representations by Cortical Somatostatin Inhibitory Neurons—Selective But with Weak and Delayed Responses , 2010, The Journal of Neuroscience.

[212]  G. González-Burgos GABA transporter GAT1: a crucial determinant of GABAB receptor activation in cortical circuits? , 2010, Advances in pharmacology.

[213]  Y. Mizoguchi,et al.  Development of cannabinoid 1 receptor protein and messenger RNA in monkey dorsolateral prefrontal cortex. , 2010, Cerebral cortex.

[214]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[215]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[216]  E. Callaway,et al.  Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells , 2010, The Journal of comparative neurology.

[217]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[218]  Thomas K. Berger,et al.  Brief Bursts Self-Inhibit and Correlate the Pyramidal Network , 2010, PLoS biology.

[219]  Arto V. Nurmikko,et al.  Pathway-Specific Feedforward Circuits between Thalamus and Neocortex Revealed by Selective Optical Stimulation of Axons , 2010, Neuron.

[220]  Jeffry S. Isaacson,et al.  From Dendrite to Soma: Dynamic Routing of Inhibition by Complementary Interneuron Microcircuits in Olfactory Cortex , 2010, Neuron.

[221]  Jessica A. Cardin,et al.  Cellular Mechanisms of Temporal Sensitivity in Visual Cortex Neurons , 2010, The Journal of Neuroscience.

[222]  N. Tamamaki,et al.  Long-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function , 2010, Front. Neurosci..

[223]  Multiplying two numbers together in your head is a difficult task if you did not learn multiplication tables as a child. On the face of it, this is somewhat surprising given the remarkable power of the brain to perform , 2010 .

[224]  Theofanis Karayannis,et al.  Neuronal activity is required for the development of specific cortical interneuron subtypes , 2011, Nature.

[225]  P. Jonas,et al.  Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses , 2011, Nature Reviews Neuroscience.

[226]  Christian Wozny,et al.  Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex , 2011, Cerebral cortex.

[227]  E. Callaway,et al.  Monosynaptic inputs to ErbB4‐expressing inhibitory neurons in mouse primary somatosensory cortex , 2011, The Journal of comparative neurology.

[228]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[229]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[230]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[231]  D. Feldman,et al.  Parallel Regulation of Feedforward Inhibition and Excitation during Whisker Map Plasticity , 2011, Neuron.

[232]  F. Karube,et al.  Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. , 2011, Cerebral cortex.

[233]  Masaki Nomura,et al.  Conserved properties of dendritic trees in four cortical interneuron subtypes , 2011, Scientific reports.

[234]  Mark H. Ellisman,et al.  Multiple Clusters of Release Sites Formed by Individual Thalamic Afferents onto Cortical Interneurons Ensure Reliable Transmission , 2011, Neuron.

[235]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[236]  Rafael Yuste,et al.  State-Dependent Function of Neocortical Chandelier Cells , 2011, The Journal of Neuroscience.

[237]  M. Carandini,et al.  GABAA Inhibition Controls Response Gain in Visual Cortex , 2011, The Journal of Neuroscience.

[238]  Ethan M. Goldberg,et al.  Rapid developmental maturation of neocortical FS cell intrinsic excitability. , 2011, Cerebral cortex.

[239]  Hongkui Zeng,et al.  Differential tuning and population dynamics of excitatory and inhibitory neurons reflect differences in local intracortical connectivity , 2011, Nature Neuroscience.

[240]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[241]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[242]  Arno C. Schmitt,et al.  Inhibitory interneurons in a cortical column form hot zones of inhibition in layers 2 and 5A , 2011, Proceedings of the National Academy of Sciences.

[243]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[244]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[245]  Oscar Marín,et al.  Interneuron dysfunction in psychiatric disorders , 2012, Nature Reviews Neuroscience.

[246]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[247]  Corbett Bennett,et al.  Prolonged Disynaptic Inhibition in the Cortex Mediated by Slow, Non-α7 Nicotinic Excitation of a Specific Subset of Cortical Interneurons , 2012, The Journal of Neuroscience.

[248]  A. N. van den Pol,et al.  Neuropeptide Transmission in Brain Circuits , 2012, Neuron.

[249]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[250]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[251]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[252]  P. Somogyi,et al.  Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex In Vivo , 2012, The Journal of Neuroscience.

[253]  Frances S. Chance,et al.  Erratum: Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex , 2013, Nature Neuroscience.

[254]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[255]  Omar J. Ahmed,et al.  Thalamic Control of Layer 1 Circuits in Prefrontal Cortex , 2012, The Journal of Neuroscience.

[256]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[257]  M. Whittington,et al.  Long-Range–Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex , 2012, Science.

[258]  Norimitsu Suzuki,et al.  Microcircuits Mediating Feedforward and Feedback Synaptic Inhibition in the Piriform Cortex , 2012, The Journal of Neuroscience.

[259]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[260]  Arne V. Blackman,et al.  Target-Specific Expression of Presynaptic NMDA Receptors in Neocortical Microcircuits , 2012, Neuron.

[261]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[262]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[263]  A. Reyes,et al.  Characterization of thalamocortical responses of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro and in silico. , 2012, Journal of neurophysiology.

[264]  Anirvan Ghosh,et al.  Elfn1 Regulates Target-Specific Release Probability at CA1-Interneuron Synapses , 2012, Science.

[265]  Y. Dan,et al.  Dissection of Cortical Microcircuits by Single-Neuron Stimulation In Vivo , 2012, Current Biology.

[266]  Massimo Scanziani,et al.  The contribution of synaptic location to inhibitory gain control in pyramidal cells , 2013, Physiological reports.

[267]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[268]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[269]  C. McBain,et al.  Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation , 2012, Nature Neuroscience.

[270]  Hannah Monyer,et al.  The long and short of GABAergic neurons , 2013, Current Opinion in Neurobiology.

[271]  J. Rubenstein,et al.  GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior , 2013, Nature Neuroscience.

[272]  Benjamin A. Dunn,et al.  Recurrent inhibitory circuitry as a mechanism for grid formation , 2013, Nature Neuroscience.

[273]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[274]  Gord Fishell,et al.  The Neuron Identity Problem: Form Meets Function , 2013, Neuron.

[275]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[276]  M. Sur,et al.  Response Selectivity Is Correlated to Dendritic Structure in Parvalbumin-Expressing Inhibitory Neurons in Visual Cortex , 2013, The Journal of Neuroscience.

[277]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[278]  Bernardo Rudy,et al.  CaV2.1 ablation in cortical interneurons selectively impairs fast‐spiking basket cells and causes generalized seizures , 2013, Annals of neurology.

[279]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[280]  Ethan M. Goldberg,et al.  Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction , 2013, Nature Reviews Neuroscience.

[281]  Ilan Lampl,et al.  Cortical Balance of Excitation and Inhibition Is Regulated by the Rate of Synaptic Activity , 2013, The Journal of Neuroscience.

[282]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[283]  B. Hangya,et al.  Distinct behavioural and network correlates of two interneuron types in prefrontal cortex , 2013, Nature.

[284]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[285]  E. Kuramoto,et al.  Cell Type-Specific Inhibitory Inputs to Dendritic and Somatic Compartments of Parvalbumin-Expressing Neocortical Interneuron , 2013, The Journal of Neuroscience.

[286]  Thomas M. Morse,et al.  Compartmentalization of GABAergic Inhibition by Dendritic Spines , 2013, Science.

[287]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[288]  Bryan M Hooks,et al.  Distinct Balance of Excitation and Inhibition in an Interareal Feedforward and Feedback Circuit of Mouse Visual Cortex , 2013, The Journal of Neuroscience.

[289]  Michael Wehr,et al.  Parvalbumin-Expressing Inhibitory Interneurons in Auditory Cortex Are Well-Tuned for Frequency , 2013, The Journal of Neuroscience.

[290]  G. Buzsáki,et al.  Inhibition-Induced Theta Resonance in Cortical Circuits , 2013, Neuron.

[291]  A. Holtmaat,et al.  Sensory-evoked LTP driven by dendritic plateau potentials in vivo , 2014, Nature.

[292]  Mriganka Sur,et al.  Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo , 2014, Nature Communications.

[293]  Z Josh Huang,et al.  Toward a Genetic Dissection of Cortical Circuits in the Mouse , 2014, Neuron.

[294]  Shawn R. Olsen,et al.  Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex , 2014, Neuron.

[295]  Hua Hu A supercritical density of Na+ channels ensures fast signaling in GABAergic interneuron axons , 2014 .

[296]  Inhibition: synapses, neurons and circuits , 2014, Current Opinion in Neurobiology.

[297]  D. Lewis,et al.  Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia , 2014, Current Opinion in Neurobiology.

[298]  Bryan M. Hooks,et al.  Thorough GABAergic innervation of the entire axon initial segment revealed by an optogenetic ‘laserspritzer’ , 2014, The Journal of physiology.

[299]  M. Scanziani,et al.  Equalizing Excitation-Inhibition Ratios across Visual Cortical Neurons , 2014, Nature.

[300]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[301]  Yoshiyuki Kubota,et al.  Untangling GABAergic wiring in the cortical microcircuit , 2014, Current Opinion in Neurobiology.

[302]  William Muñoz,et al.  Spatiotemporal specificity in cholinergic control of neocortical function , 2014, Current Opinion in Neurobiology.

[303]  A. Maffei,et al.  Target-Specific Properties of Thalamocortical Synapses onto Layer 4 of Mouse Primary Visual Cortex , 2014, The Journal of Neuroscience.

[304]  Joseph J. Marlin,et al.  GABA-A Receptor Inhibition of Local Calcium Signaling in Spines and Dendrites , 2014, The Journal of Neuroscience.

[305]  László G Puskás,et al.  GABAergic Neurogliaform Cells Represent Local Sources of Insulin in the Cerebral Cortex , 2014, The Journal of Neuroscience.

[306]  Peter Jonas,et al.  Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function , 2014, Science.

[307]  Rafael Yuste,et al.  Spatial distribution of neurons innervated by chandelier cells , 2014, Brain Structure and Function.

[308]  Vikaas S Sohal,et al.  A Class of GABAergic Neurons in the Prefrontal Cortex Sends Long-Range Projections to the Nucleus Accumbens and Elicits Acute Avoidance Behavior , 2014, The Journal of Neuroscience.

[309]  Attila Losonczy,et al.  Parvalbumin-Positive Basket Cells Differentiate among Hippocampal Pyramidal Cells , 2014, Neuron.

[310]  J. Rubenstein,et al.  Pyramidal Neurons in Prefrontal Cortex Receive Subtype-Specific Forms of Excitation and Inhibition , 2014, Neuron.

[311]  Peyman Golshani,et al.  Functional fission of parvalbumin interneuron classes during fast network events , 2014, eLife.

[312]  Bernardo Rudy,et al.  Channelrhodopsin-assisted patching: in vivo recording of genetically and morphologically identified neurons throughout the brain. , 2014, Cell reports.

[313]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[314]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[315]  Yang Dan,et al.  Interneuron subtypes and orientation tuning , 2014, Nature.

[316]  G. Buzsáki,et al.  Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations , 2014, Neuron.

[317]  Lief E. Fenno,et al.  Targeting cells with single vectors using multiple-feature Boolean logic , 2014, Nature Methods.

[318]  M. Huntsman,et al.  Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons , 2014, Neuroscience.

[319]  Miho Nakajima,et al.  Oxytocin Modulates Female Sociosexual Behavior through a Specific Class of Prefrontal Cortical Interneurons , 2014, Cell.

[320]  Jochen F. Staiger,et al.  Revisiting enigmatic cortical calretinin-expressing interneurons , 2014, Front. Neuroanat..

[321]  H. Zoghbi,et al.  Loss of MeCP2 in Parvalbumin-and Somatostatin-Expressing Neurons in Mice Leads to Distinct Rett Syndrome-like Phenotypes , 2015, Neuron.

[322]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[323]  Jochen F. Staiger,et al.  Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences , 2015, Cerebral cortex.

[324]  Y. Yanagawa,et al.  Corticofugal GABAergic projection neurons in the mouse frontal cortex , 2015, Front. Neuroanat..

[325]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[326]  Jeanne T Paz,et al.  Microcircuits and their interactions in epilepsy: is the focus out of focus? , 2015, Nature Neuroscience.

[327]  György Buzsáki,et al.  Tasks for inhibitory interneurons in intact brain circuits , 2015, Neuropharmacology.

[328]  H. Monyer,et al.  Interneuron control of hippocampal oscillations , 2015, Current Opinion in Neurobiology.

[329]  Alison L. Barth,et al.  Neocortical Somatostatin Neurons Reversibly Silence Excitatory Transmission via GABAb Receptors , 2015, Current Biology.

[330]  Staci A. Sorensen,et al.  Adult Mouse Cortical Cell Taxonomy Revealed by Single Cell Transcriptomics , 2016 .

[331]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[332]  Attila Losonczy,et al.  Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition , 2016, Science.

[333]  Yuchio Yanagawa,et al.  Integration of electrophysiological recordings with single-cell RNA-seq data identifies novel neuronal subtypes , 2015, Nature Biotechnology.

[334]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[335]  Mark S. Cembrowski,et al.  Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells , 2016, Neuron.

[336]  Rafael Yuste,et al.  Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex , 2016, Neuron.

[337]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .