Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators
暂无分享,去创建一个
[1] Philip Wolfe,et al. Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974, Math. Program..
[2] R. Bellman,et al. An Introduction to Minimax , 1976 .
[3] V. F. Demʹi︠a︡nov,et al. Introduction to minimax , 1976 .
[4] R. Mifflin. A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization , 1982 .
[5] Krzysztof C. Kiwiel,et al. An aggregate subgradient method for nonsmooth convex minimization , 1983, Math. Program..
[6] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[7] Warren P. Adams,et al. A hierarchy of relaxation between the continuous and convex hull representations , 1990 .
[8] R. Durrett. Probability: Theory and Examples , 1993 .
[9] Hanif D. Sherali,et al. A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..
[10] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[11] J. Friedman,et al. [A Statistical View of Some Chemometrics Regression Tools]: Response , 1993 .
[12] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[13] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[14] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[15] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[16] Arkadi Nemirovski,et al. Topics in Non-Parametric Statistics , 2000 .
[17] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[18] Jean B. Lasserre,et al. An Explicit Exact SDP Relaxation for Nonlinear 0-1 Programs , 2001, IPCO.
[19] Sanjoy Dasgupta,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.
[20] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[21] S. Mendelson,et al. Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.
[22] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[23] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[24] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[25] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[26] E. Candès,et al. Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.
[27] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[28] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[29] A. Belloni,et al. Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2010, 1009.5689.
[30] M. Rudelson,et al. Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.
[31] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[32] Martin J. Wainwright,et al. Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..
[33] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[34] Sara van de Geer,et al. Statistics for High-Dimensional Data , 2011 .
[35] Cun-Hui Zhang,et al. Scaled sparse linear regression , 2011, 1104.4595.
[36] Po-Ling Loh,et al. Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..
[37] Michael I. Jordan. On statistics, computation and scalability , 2013, ArXiv.
[38] M.E.Sc. Wieslaw Stepniewski,et al. The Prediction of Performance , 2013 .
[39] Martin J. Wainwright,et al. Lower bounds on the performance of polynomial-time algorithms for sparse linear regression , 2014, COLT.
[40] M. Wainwright. Constrained forms of statistical minimax : 1 Computation , communication , and privacy , 2014 .
[41] A. Dalalyan,et al. On the Prediction Performance of the Lasso , 2014, 1402.1700.
[42] Martin J. Wainwright,et al. Sparse learning via Boolean relaxations , 2015, Mathematical Programming.
[43] Hao Yin,et al. Strong NP-Hardness Result for Regularized $L_q$-Minimization Problems with Concave Penalty Functions , 2015, ArXiv.
[44] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .