CSigma graphs: A new approach for plasma characterization in laser-induced breakdown spectroscopy

[1]  J. B. Simeonsson,et al.  Time-resolved emission studies of ArF-laser-produced microplasmas. , 1993, Applied optics.

[2]  S. Acquaviva,et al.  Laser-induced breakdown spectroscopy for compositional analysis of multielemental thin films , 2006 .

[3]  R. Redon,et al.  Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium , 2003 .

[4]  D. Peña,et al.  Stoichiometry analysis of titanium oxide coating by LIBS , 2009 .

[5]  J. Bengoechea,et al.  Influence of the optical depth on spectral line emission from laser-induced plasmas , 2001 .

[6]  J. Winefordner,et al.  On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy , 2009 .

[7]  J. Hermann,et al.  Diagnostics of the early phase of an ultraviolet laser induced plasma by spectral line analysis considering self-absorption , 1998 .

[8]  J. Winefordner,et al.  Determination of the Maximum Temperature at the Center of an Optically Thick Laser-Induced Plasma Using Self-Reversed Spectral Lines , 2004, Applied spectroscopy.

[9]  J. A. Aguilera,et al.  Multi-element Saha–Boltzmann and Boltzmann plots in laser-induced plasmas , 2007 .

[10]  J. A. Aguilera,et al.  Experimental Stark widths and shifts of Cr II spectral lines , 2014 .

[11]  R. Noll,et al.  Material ablation and plasma state for single and collinear double pulses interacting with iron samples at ambient gas pressures below 1 bar , 2006 .

[12]  Wolfgang L. Wiese,et al.  A Critical Compilation of Atomic Transition Probabilities for Neutral and Singly Ionized Iron , 2006 .

[13]  J. A. Aguilera,et al.  Measurement of Stark broadening parameters of Fe II and Ni II spectral lines by laser induced breakdown spectroscopy using fused glass samples , 2014 .

[14]  G. Bertuccelli,et al.  Calculation of Optical Thicknesses of Magnesium Emission Spectral Lines for Diagnostics of Laser-Induced Plasmas , 2011, Applied spectroscopy.

[15]  R. Noll,et al.  Fast vacuum slag analysis in a steel works by laser-induced breakdown spectroscopy ☆ , 2008 .

[16]  H. Nilsson,et al.  The FERRUM project: improved experimental oscillator strengths in Cr II , 2006 .

[17]  G. Cristoforetti,et al.  Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements , 2005 .

[18]  G. Bertuccelli,et al.  Laser induced breakdown spectroscopy on metallic alloys: Solving inhomogeneous optically thick plasmas , 2008 .

[19]  Marco A. Gigosos,et al.  New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics , 1996 .

[20]  R. Kling,et al.  Accurate f-Values for Ultraviolet Transitions from the 3d5(6S)4p Levels in Mn II , 2000 .

[21]  R. Noll,et al.  Systematic line selection for online coating thickness measurements of galvanised sheet steel using LIBS , 2006, Analytical and bioanalytical chemistry.

[22]  N. Omenetto,et al.  Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma—Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community , 2010, Applied spectroscopy.

[23]  J. A. Aguilera,et al.  Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions.. Comparison of local and spatially integrated measurements , 2004 .

[24]  A. Srećković,et al.  Mg II h and k lines Stark parameters , 2004 .

[25]  J. A. Aguilera,et al.  Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods , 2008 .

[26]  L. I. Podobedova,et al.  Atomic Transition Probabilities of Silicon. A Critical Compilation , 2008 .

[27]  A. Srećković,et al.  Mg II spectral line broadening in helium, oxygen and argon-helium plasmas , 2004 .

[28]  V. Lazic,et al.  Self-absorption model in quantitative laser induced breakdown spectroscopy measurements on soils and sediments , 2001 .

[29]  J. A. Aguilera,et al.  Apparent excitation temperature in laser-induced plasmas , 2007 .

[30]  E. Hinnov A Method of Determining Optical Cross Sections , 1957 .

[31]  R. Noll,et al.  Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy , 2009 .

[32]  S. Penner Physics of shock waves and high-temperature hydrodynamic phenomena - Ya.B. Zeldovich and Yu.P. Raizer (translated from the Russian and then edited by Wallace D. Hayes and Ronald F. Probstein); Dover Publications, New York, 2002, 944 pp., $34. , 2003 .

[33]  A. Srećković,et al.  The first measured Mn II and Mn III Stark broadening parameters , 2006 .

[34]  Stefano Legnaioli,et al.  A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy , 2002 .

[35]  G. Cristoforetti,et al.  Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis , 2013 .

[36]  Anne P. Thorne,et al.  Spectrophysics: Principles And Applications , 1974 .

[37]  J. A. Aguilera,et al.  Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption , 2008 .

[38]  J. A. Aguilera,et al.  Curves of growth of neutral atom and ion lines emitted by a laser induced plasma , 2005 .

[39]  J. A. Aguilera,et al.  Curves of growth of spectral lines emitted by a laser-induced plasma: influence of the temporal evolution and spatial inhomogeneity of the plasma , 2003 .

[40]  Paolo Cielo,et al.  Quantitative Analysis of Aluminum Alloys by Laser-Induced Breakdown Spectroscopy and Plasma Characterization , 1995 .

[41]  F. Claisse Choix de la composition optimale d'un borate de lithium dans la préparation des perles pour analyses par fluo-X , 1998 .

[42]  J. A. Aguilera,et al.  Stark width measurements of Fe II lines with wavelengths in the range 230–260 nm , 2011 .

[43]  A. Srećković,et al.  Line broadening in the Si I, Si II, Si III, and Si IV spectra in the helium plasma , 2009 .

[44]  J. D. Winefordner,et al.  Modeling an inhomogeneous optically thick laser induced plasma: a simplified theoretical approach , 2001 .

[45]  G. Bertuccelli,et al.  Semiempirical model for analysis of inhomogeneous optically thick laser-induced plasmas☆ , 2009 .

[46]  M. Kuntz,et al.  A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function , 1997 .

[47]  Leon J. Radziemski,et al.  Time-resolved laser-induced breakdown spectrometry of aerosols , 1983 .

[48]  F. Meijer Plasma Spectroscopy , 2000 .

[49]  J. A. Aguilera,et al.  Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines: Comparative results from Hα, Fe I and Si II lines , 2010 .

[50]  J. Winefordner,et al.  Curve of growth methodology applied to laser-induced plasma emission spectroscopy , 1999 .