The global existence of nonlinear observers with linear error dynamics: A topological point of view

In this paper we show that under suitable assumptions, there exists a global homeomorphism Ψ(=Φ-1) of Rn which maps a nonlinear system x˙=f(x),x(0)=x0,y=h(x) onto a linear system with output injection z˙=Az+β(y),z(0)=Ψ(x0). Thus, an observer for state x can be directly constructed as x^˙=f(x^)+β(y)-β(h(x^)), which is a generalized version of Luenberger observer. An important feature of the obtained result is that there is no need to find the corresponding change of coordinates Ψ explicitly, which is different from current various existing approaches.

[1]  MingQing Xiao,et al.  Observers for linearly unobservable nonlinear systems , 2002, Syst. Control. Lett..

[2]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[3]  MingQing Xiao,et al.  Erratum: Nonlinear Observer Design in the Siegel Domain , 2004, SIAM J. Control. Optim..

[4]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[5]  Wilfrid Perruquetti,et al.  Chaos in Automatic Control , 2005 .

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[8]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[9]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[10]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[11]  Arthur J. Krener,et al.  Nonlinear Observer Design for Smooth Systems , 2018, Chaos in Automatic Control.

[12]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  MingQing Xiao,et al.  Nonlinear Observer Design in the Siegel Domain , 2002, SIAM J. Control. Optim..

[14]  Gerhard Kreisselmeier,et al.  Nonlinear Observers for Autonomous , 2003 .

[15]  A. Krener Approximate linearization by state feedback and coordinate change , 1984 .

[16]  R. Martinez-Guerra,et al.  On nonlinear observers , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.