The global existence of nonlinear observers with linear error dynamics: A topological point of view
暂无分享,去创建一个
[1] MingQing Xiao,et al. Observers for linearly unobservable nonlinear systems , 2002, Syst. Control. Lett..
[2] J. Hale,et al. Dynamics and Bifurcations , 1991 .
[3] MingQing Xiao,et al. Erratum: Nonlinear Observer Design in the Siegel Domain , 2004, SIAM J. Control. Optim..
[4] H. Nijmeijer,et al. New directions in nonlinear observer design , 1999 .
[5] Wilfrid Perruquetti,et al. Chaos in Automatic Control , 2005 .
[6] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[7] C. Kravaris,et al. Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[8] Arthur J. Krener,et al. Linearization by output injection and nonlinear observers , 1983 .
[9] D. Bestle,et al. Canonical form observer design for non-linear time-variable systems , 1983 .
[10] Vladimir Igorevich Arnold,et al. Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .
[11] Arthur J. Krener,et al. Nonlinear Observer Design for Smooth Systems , 2018, Chaos in Automatic Control.
[12] A. Fuller,et al. Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.
[13] MingQing Xiao,et al. Nonlinear Observer Design in the Siegel Domain , 2002, SIAM J. Control. Optim..
[14] Gerhard Kreisselmeier,et al. Nonlinear Observers for Autonomous , 2003 .
[15] A. Krener. Approximate linearization by state feedback and coordinate change , 1984 .
[16] R. Martinez-Guerra,et al. On nonlinear observers , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.