An adaptive subdivision technique for the approximation of attractors and invariant measures: proof of convergence

We prove convergence of a recently introduced adaptive multilevel algorithm for the efficient computation of invariant measures and attractors of dynamical systems. The proof works in the context of (sufficiently regular) stochastic processes and essentially shows that the discretization of phase space leads to a small random perturbation of the original process. A generalized version of a lemma of Khasminskii then gives the desired result.

[1]  Y. Kifer General random perturbations of hyperbolic and expanding transformations , 1986 .

[2]  S. Ulam A collection of mathematical problems , 1960 .

[3]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[4]  Konstantin Mischaikow,et al.  Exploring global dynamics: a numerical algorithm based on the conley index theory , 1995 .

[5]  O. Junge,et al.  Almost Invariant Sets in Chua's Circuit , 1997 .

[6]  Gerhard Keller,et al.  Stochastic stability in some chaotic dynamical systems , 1982 .

[7]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[8]  Abraham Boyarsky,et al.  Approximating measures invariant under higher-dimensional chaotic transformations , 1991 .

[9]  Jiu Ding,et al.  Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjecture to multi-dimensional transformations , 1996 .

[10]  Michael Dellnitz,et al.  An adaptive subdivision technique for the approximation of attractors and invariant measures , 1998 .

[11]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[12]  Qiang Du,et al.  High order approximation of the Frobenius-Perron operator , 1993 .

[13]  M. Dellnitz,et al.  An adaptive method for the approximation of the generalized cell mapping , 1997 .

[14]  Gary Froyland,et al.  Finite Approximation of Sinai-Bowen-Ruelle Measures for Anosov Systems in Two Dimensions , 1995 .

[15]  Gary Froyland,et al.  Estimating physical invariant measures and space averages of dynamical systems indicators , 1997, Bulletin of the Australian Mathematical Society.

[16]  Gerhard Keller,et al.  Random perturbations of chaotic dynamical systems: stability of the spectrum , 1997, chao-dyn/9712016.

[17]  Walter M. Miller Stability and approximation of invariant measures for a class of nonexpanding transformations , 1994 .

[18]  Lai-Sang Young,et al.  Sinai-Bowen-Ruelle measures for certain Hénon maps , 1993 .

[19]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[20]  Michael Dellnitz,et al.  The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .

[21]  Chichia Chiu,et al.  Error estimates of the Markov finite approximation of the Frobenius-Perron operator , 1992 .

[22]  A. Boyarsky,et al.  Constructive approximations to the invariant densities of higher-dimensional transformations , 1994 .

[23]  Fern Y. Hunt,et al.  Approximating the Invariant Measures of Randomly Perturbed Dissipative Maps , 1996 .

[24]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .