Uniform exponential energy decay of wave equations in a bounded region with L2(0, ∞; L2 (Γ))-feedback control in the Dirichlet boundary conditions

Etant donne un ouvert borne Ω⊂R n , n≥2, on considere l'equation d'onde: W tt =ΔW dans (O,∞)×Ω, avec des conditions initiales W(o,x)=w o (x)∈L 2 (Ω), w 1 (o,x)=w 1 (x)∈H −1 (Ω), et des conditions aux limites non homogenes de type Dirichlet w(t,σ)≡u(t,σ) sur (o,∞)×Γ, Γ etant la frontiere de Ω

[1]  Goong Chen,et al.  A Note on the Boundary Stabilization of the Wave Equation , 1981 .

[2]  Irena Lasiecka,et al.  A cosine operator approach to modelingL2(0,T; L2 (Γ))—Boundary input hyperbolic equations , 1981 .

[3]  Daisuke Fujiwara,et al.  Concrete Characterization of the Domains of Fractional Powers of Some Elliptic Differential Operators of the Second Order , 1967 .

[4]  I. Lasiecka Unified theory for abstract parabolic boundary problems—a semigroup approach , 1980 .

[5]  R. Sakamoto Mixed problems for hyperbolic equations I Energy inequalities , 1970 .

[6]  Irena Lasiecka,et al.  Dirichlet boundary stabilization of the wave equation with damping feedback of finite range , 1983 .

[7]  R. Triggiani,et al.  Regularity of hyperbolic equations underL2(0,T; L2(Γ))-Dirichlet boundary terms , 1983 .

[8]  John Lagnese Exact Boundary Value Controllability of a Class of Hyperbolic Equations , 1978 .

[9]  加藤 敏夫,et al.  Perturbation theory for linear operators , 1984 .

[10]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[11]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[12]  David L. Russell,et al.  A Unified Boundary Controllability Theory for Hyperbolic and Parabolic Partial Differential Equations , 1973 .

[13]  Irena Lasiecka,et al.  Boundary control of parabolic systems: Finite-element approximation , 1980 .

[14]  David L. Russell,et al.  Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  N. Levan The stabilizability problem: A Hilbert space operator decomposition approach , 1978 .

[16]  R. Sakamoto Mixed problems for hyperbolic equations II, Existence Theorem with Zero Initial Data and Energy Inequalities with Initial Datas , 1970 .

[17]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[18]  J. Lagnese Decay of solutions of wave equations in a bounded region with boundary dissipation , 1983 .

[19]  W. Littman Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients , 1978 .

[20]  R. Triggiani,et al.  Riccati equations for hyperbolic partial differential equations with L2(O,T; L2(T)) - Dirichlet boundary terms , 1985, 1985 24th IEEE Conference on Decision and Control.

[21]  Marshall Slemrod,et al.  Stabilization of boundary control systems , 1976 .