Uncertainty Assessments of Hypersonic Shock Wave-Turbulent Boundary-Layer Interactions at Compression Corners

Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission-relevant conditions at Mach 7 and Mach 14 are defined for a precompression ramp of a scramjet-powered vehicle. Two compression angles are defined: the smallest to avoid separation losses and the largest to force higher temperature flow physics. The Baldwin–Lomax and the Cebeci– Smith algebraic models, the one-equation Spalart–Allmaras model with the Catrix–Aupoix compressibility modification, and two-equation models, including the Menter shear stress transport model and the Wilcox k-! 98 and k-! 06 turbulence models, are evaluated. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model-form uncertainty. A set of coarse-grained uncertainty metrics are defined to capture essential differences among turbulence models. There is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock– turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new grid-converged solutions presented here.

[1]  Timothy Wadhams,et al.  EXPERIMENTAL STUDIES OF SHOCK WAVE/TURBULENT BOUNDARY LAYER INTERACTION IN HIGH REYNOLDS NUMBER SUPERSONIC AND HYPERSONIC FLOWS TO EVALUATE THE PERFORMANCE OF CFD CODES , 2010 .

[2]  Yusuke Tokura,et al.  Spatial DNS of an Isothermal Flat Plate Supersonic Turbulent Boundary Layer with/out Impinging Shock Wave , 2011 .

[3]  J. Lumley,et al.  The return to isotropy of homogeneous turbulence , 1977, Journal of Fluid Mechanics.

[4]  Peter A. Gnoffo,et al.  Paper 2001-1025 CFD Validation Studies for Hypersonic Flow Prediction , 2022 .

[5]  Alireza Mazaheri,et al.  LAURA Users Manual: 5.3-48528 , 2010 .

[6]  M. Holden,et al.  Studies of the mean and unsteady structure of turbulent boundary layer separation in hypersonic flow , 1991 .

[7]  Gary S. Settles,et al.  Hypersonic Shock/Boundary-Layer Interaction Database , 1991 .

[8]  P. G. Huang,et al.  Errata Van Driest transformation and compressible wall-bounded flows , 1995 .

[9]  Wolfgang Rodi,et al.  Experience with two-layer models combining the k-epsilon model with a one-equation model near the wall , 1991 .

[10]  F. Billig Research on supersonic combustion , 1992 .

[11]  G. M. Elfstrom Turbulent hypersonic flow at a wedge-compression corner , 1972 .

[12]  T. Kármán,et al.  Turbulence and Skin Friction , 1934 .

[13]  P. Gnoffo An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows , 1990 .

[14]  Minwei Wu,et al.  Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp , 2007 .

[15]  J. L. Stollery,et al.  Heat transfer from hypersonic turbulent flow at a wedge compression corner , 1972, Journal of Fluid Mechanics.

[16]  T. J. Coakley,et al.  Turbulence modeling for complex hypersonic flows , 1993 .

[17]  Anthony M. Calomino,et al.  An Overview of Technology Investments in the NASA Entry Systems Modeling Project , 2015 .

[18]  Shizhao Wang,et al.  Study of the shock motion in a hypersonic shock system/turbulent boundary layer interaction , 1995 .

[19]  Christopher J. Roy,et al.  Review and assessment of turbulence models for hypersonic flows , 2006 .

[20]  E. Hopkins,et al.  An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers , 1971 .

[21]  Christopher J. Roy,et al.  Verification and Validation in Scientific Computing: Design and execution of validation experiments , 2010 .

[22]  Scott A. Berry,et al.  Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners , 2011 .

[23]  J. R. Ristorcelli,et al.  Diagnostic Statistics for the Assessment and Characterization of Complex Turbulent Flows , 1995 .

[24]  L. Brown,et al.  Shock wave / boundary layer interactions on hypersonic intake flows , 2007 .

[25]  Graham V. Candler,et al.  SUBGRID-SCALE MODEL FOR THE TEMPERATURE FLUCTUATIONS IN REACTING HYPERSONIC TURBULENT FLOWS , 1999 .

[26]  G. N. Coleman,et al.  Van Driest transformation and compressible wall-bounded flows , 1994 .

[27]  Kathryn E. Wurster,et al.  Boundary Layer Transition on X-43A , 2008 .

[28]  G. Candler,et al.  Hypersonic Boundary Layer Stability Analysis Using PSE-Chem , 2005 .

[29]  Alexander J. Smits,et al.  Current status of basic research in hypersonic turbulence , 2009 .

[30]  Christopher J. Roy,et al.  Verification and Validation in Scientific Computing , 2010 .

[31]  Gary S. Settles,et al.  Supersonic and hypersonic shock/boundary-layer interaction database , 1994 .

[32]  D. Knight,et al.  Advances in CFD prediction of shock wave turbulent boundary layer interactions , 2003 .

[33]  P. Spalart Detached-Eddy Simulation , 2009 .

[34]  Allan Paull,et al.  Transducer for Direct Measurement of Skin Friction in Hypervelocity Impulse Facilities , 2002 .

[35]  E. R. V. Driest,et al.  Turbulent Boundary Layer in Compressible Fluids , 2003 .

[36]  D. Wilcox Turbulence modeling for CFD , 1993 .

[37]  Peter A. Gnoffo,et al.  Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability , 2013 .

[38]  Chau-Lyan Chang LASTRAC.3d: Transition Prediction in 3D Boundary Layers , 2004 .

[39]  Peter A. Gnoffo,et al.  Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability , 2011 .

[40]  G. Candler,et al.  Data-Parallel Line Relaxation Method for the Navier -Stokes Equations , 1998 .

[41]  J. A. White,et al.  A Psuedo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations , 1999 .

[42]  Matthew William Orr,et al.  Design, Analysis, and Initial Testing of a Fiber-Optic Shear Gage for 3D, High-Temperature Flows , 2004 .

[43]  C. C. Horstman,et al.  Hypersonic shock-wave turbulent-boundary-layer interaction flows - Experiment and computation , 1991 .

[44]  Josef Ballmann,et al.  Performance of Upwind Schemes and Turbulence Models in Hypersonic Flows , 2004 .

[45]  Christopher J. Roy,et al.  DSMC and Navier-Stokes Predictions for Hypersonic Laminar Interacting Flows , 2001 .

[46]  C. Horstman,et al.  Documentation of Two- and Three-Dimensional Hypersonic Shock Wave/Turbulent Boundary Layer Interaction Flows , 1992 .

[47]  Peter A. Gnoffo,et al.  Multiblock analysis for Shuttle Orbiter reentry heating from Mach 24 to Mach 12 , 1994 .