Enhanced chiral recognition by β-cyclodextrin at liquid/liquid interfaces as revealed by chromatographic and interfacial tension measurements.

[1]  T. Okada Micro- and Nano-Liquid Phases Coexistent with Ice as Separation and Reaction Media. , 2017, Chemical record.

[2]  K. Kaneda,et al.  Cover Picture: Metal–Support Cooperative Catalysts for Environmentally Benign Molecular Transformations (The Chemical Record 1/2017) , 2017 .

[3]  M. Harada,et al.  Shear-Driven Flow Ice Chromatography as a Possible Tool Probing Ice/Water Interface. , 2016, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[4]  S. Igarashi,et al.  β-Cyclodextrin as a Metal-anionic Porphyrin Complexation Accelerator in Aqueous Media , 2016, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[5]  P. Amorós,et al.  Evaluation of a Cyclodextrin-silica Hybrid Microporous Composite for the Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons. , 2016, Analytical Sciences.

[6]  S. Cerveny,et al.  Confined Water as Model of Supercooled Water. , 2016, Chemical reviews.

[7]  M. Harada,et al.  Chiral resolution with frozen aqueous amino acids , 2016 .

[8]  M. Harada,et al.  Fluidic Grooves on Doped-Ice Surface as Size-Tunable Channels , 2015, Scientific Reports.

[9]  I. Benjamin,et al.  β-Cyclodextrin at the Water/1-Bromobutane Interface: Molecular Insight into Reverse Phase Transfer Catalysis. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[10]  T. Okada,et al.  Versatile chiral chromatography with mixed stationary phases of water-impregnated silica gel and reversed-phase packing. , 2014, The Analyst.

[11]  L. Szente,et al.  Cyclodextrins in analytical chemistry: host-guest type molecular recognition. , 2013, Analytical chemistry.

[12]  C. Acuña-Rougier,et al.  Thermodynamic and geometric study of diasteroisomeric complexes formed by racemic flavanones and three cyclodextrins through NMR , 2013, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[13]  G. Fukuhara,et al.  Peptide chirality sensing by a cyclodextrin-polythiophene conjugate. , 2012, Chemistry.

[14]  T. Okada,et al.  Up to 4 orders of magnitude enhancement of crown ether complexation in an aqueous phase coexistent with ice. , 2012, Journal of the American Chemical Society.

[15]  Chun-yue Pan,et al.  Equilibrium studies on enantioselective extraction of oxybutynin enantiomers by hydrophilic β‐cyclodextrin derivatives , 2011 .

[16]  Martin Brandl,et al.  Solubilization of ibuprofen with β-cyclodextrin derivatives: energetic and structural studies. , 2011, Journal of pharmaceutical and biomedical analysis.

[17]  T. Hashimoto,et al.  Electrolyte-doped ice as a platform for atto- to femtoliter reactor enabling zeptomol detection. , 2011, Analytical chemistry.

[18]  K. Grudpan,et al.  Doped soap membranes selectively permeate a chiral isomer. , 2010, Journal of the American Chemical Society.

[19]  T. Okada,et al.  Chiral ice chromatography. , 2010, Journal of the American Chemical Society.

[20]  A. V. Diemen,et al.  Properties of cyclodextrins, Part VIII: Determination of the composition of inclusion complexes of hexane and 2,3-dimethylbutane with cyclodextrin derivatives in aqueous solution†‡ , 2010 .

[21]  Carmen González-Barreiro,et al.  A review on the use of cyclodextrins in foods , 2009 .

[22]  Akira Harada,et al.  Cyclodextrin-based supramolecular polymers. , 2009, Chemical Society reviews.

[23]  R. Kataky,et al.  Chiral detection at a liquid-liquid interface. , 2009, Chemical communications.

[24]  T. Okada,et al.  Ice chromatography modification of solute retention on water-ice stationary phase. , 2008, Journal of chromatography. A.

[25]  T. Okada,et al.  Ice Chromatographic Characterization of Thin Liquid Layer at the Interface between Water-Ice and Organic Solvent , 2008 .

[26]  Thorsteinn Loftsson,et al.  Cyclodextrins as pharmaceutical solubilizers. , 2007, Advanced drug delivery reviews.

[27]  M. Másson,et al.  Cyclodextrins and the liquid-liquid phase distribution of progesterone, estrone and prednicarbate , 2007 .

[28]  S. Ng,et al.  Urea bonded cyclodextrin derivatives onto silica for chiral HPLC. , 2006, Journal of separation science.

[29]  T. Okada,et al.  Ice chromatography. Characterization of water-ice as a chromatographic stationary phase. , 2006, Analytical chemistry.

[30]  G. Wipff,et al.  Adsorption at the liquid-liquid interface in the biphasic rhodium catalyzed hydroformylation of olefins promoted by cyclodextrins: a molecular dynamics study. , 2006, The journal of physical chemistry. B.

[31]  M. Másson,et al.  Investigation of drug-cyclodextrin complexes by a phase-distribution method: some theoretical and practical considerations. , 2005, Chemical & pharmaceutical bulletin.

[32]  S-H Chen,et al.  Slow dynamics of supercooled water confined in nanoporous silica materials , 2004 .

[33]  H. Watarai,et al.  Measurement of circular dichroism spectra of liquid/liquid interface by centrifugal liquid membrane method. , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[34]  Bradley D. Smith,et al.  Design of Supramolecular Cyclodextrin Complex Sensors for Ion and Molecule Recognition in Water , 2004 .

[35]  B. Chankvetadze Combined approach using capillary electrophoresis and NMR spectroscopy for an understanding of enantioselective recognition mechanisms by cyclodextrins. , 2004, Chemical Society reviews.

[36]  R. Marchelli,et al.  Enantioselective fluorescence sensing of amino acids by modified cyclodextrins: role of the cavity and sensing mechanism. , 2004, Chemistry.

[37]  E. D. Valle,et al.  Cyclodextrins and their uses: a review , 2004 .

[38]  M. Lucarini,et al.  Combining magnetic resonance spectroscopies, mass spectrometry, and molecular dynamics: investigation of chiral recognition by 2,6-di-O-methyl-beta-cyclodextrin. , 2004, Journal of the American Chemical Society.

[39]  Z. Juvancz,et al.  The role of cyclodextrins in chiral selective chromatography , 2002 .

[40]  M. Bellissent-Funel Structure of confined water , 2001 .

[41]  Susana Zeppieri,et al.  Interfacial Tension of Alkane + Water Systems† , 2001 .

[42]  Yoshihisa Inoue,et al.  Chiral Recognition Thermodynamics of β-Cyclodextrin: The Thermodynamic Origin of Enantioselectivity and the Enthalpy−Entropy Compensation Effect , 2000 .

[43]  K. Altria,et al.  Chiral separations by capillary electrophoresis. , 1996, Methods in molecular biology.

[44]  N. Teramae,et al.  Anion Recognition at the Liquid−Liquid Interface. Sulfate Transfer across the 1,2-Dichloroethane− Water Interface Facilitated by Hydrogen-Bonding Ionophores , 1998 .

[45]  A. Hedges Industrial Applications of Cyclodextrins. , 1998, Chemical reviews.

[46]  F. Everaerts,et al.  Thermodynamics of chiral selectivity in capillary electrophoresis: separation of ibuprofen enantiomers with β-cyclodextrin , 1997 .

[47]  K. A. Connors,et al.  The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.

[48]  M. Novotny,et al.  Maltooligosaccharides as chiral selectors for the separation of pharmaceuticals by capillary electrophoresis. , 1994, Analytical chemistry.

[49]  H. Watarai What's happening at the liquid—liquid interface in solvent extraction chemistry? , 1993 .

[50]  G. Belton Langmuir adsorption, the gibbs adsorption isotherm, and interfacial kinetics in liquid metal systems , 1976 .