An Adaptive Finite Element Method for Large Scale Image Processing

Nonlinear diffusion methods have proved to be powerful methods in the processing of 2D and 3D images. They allow a denoising and smoothing of image intensities while retaining and enhancing edges. On the other hand, compression is an important topic in image processing as well. Here a method is presented which combines the two aspects in an efficient way. It is based on a semi-implicit Finite Element implementation of nonlinear diffusion. Error indicators guide a successive coarsening process. This leads to locally coarse grids in areas of resulting smooth image intensity, while enhanced edges are still resolved on fine grid levels. Special emphasis has been put on algorithmical aspects such as storage requirements and efficiency. Furthermore, a new nonlinear anisotropic diffusion method for vector field visualization is presented.

[1]  R. Verfiirth A posteriori error estimation and adaptive mesh-refinement techniques , 2001 .

[2]  J. Weickert Foundations and applications of nonlinear anisotropic diffusion filtering , 1996 .

[3]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[4]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[5]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[6]  Martin Rumpf Recent numerical methods - A challenge for efficient visualization , 1999, Future Gener. Comput. Syst..

[7]  Martin Rumpf,et al.  Multi-Resolutional Parallel Isosurface Extraction based on Tetrahedral Bisection , 2000, Volume Graphics.

[8]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[9]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[10]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[11]  Julio Esclarín Monreal,et al.  Image Quantization Using Reaction-Diffusion Equations , 1997, SIAM J. Appl. Math..

[12]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[13]  Scott T. Acton,et al.  Multigrid anisotropic diffusion , 1998, IEEE Trans. Image Process..

[14]  K. Mikula,et al.  A coarsening finite element strategy in image selective smoothing , 1997 .

[15]  J. Kacur,et al.  Solution of nonlinear diffusion appearing in image smoothing and edge detection , 1995 .

[16]  Bernd Kawohl,et al.  Maximum and comparison principle for one-dimensional anisotropic diffusion , 1998 .

[17]  Nelson Max,et al.  Flow visualization using moving textures , 1995 .

[18]  Timothy Walsh,et al.  HP90: A general and flexible Fortran 90 hp-FE code , 1998 .

[19]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[21]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[22]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[23]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[24]  Martin Rumpf,et al.  Adaptive Projection Operators in Multiresolution Scientific Visualization , 1998, IEEE Trans. Vis. Comput. Graph..

[25]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[26]  Martin Rumpf,et al.  Anisotropic nonlinear diffusion in flow visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).