Rate of uniform consistency for nonparametric estimates with functional variables
暂无分享,去创建一个
P. Vieu | F. Ferraty | A. Laksaci | Amel Tadj | Ali Laksaci
[1] Ingrid Van Keilegom,et al. On the Validity of the Bootstrap in Non‐Parametric Functional Regression , 2009 .
[2] Frédéric Ferraty,et al. Additive prediction and boosting for functional data , 2009, Comput. Stat. Data Anal..
[3] L. Delsol,et al. Advances on asymptotic normality in non-parametric functional time series analysis , 2009 .
[4] Frédéric Ferraty,et al. Cross-validated estimations in the single-functional index model , 2008 .
[5] M'hamed Ezzahrioui,et al. Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data , 2008 .
[6] A. V. D. Vaart,et al. Bayesian inference with rescaled Gaussian process priors , 2007, 0710.3679.
[7] Mustapha Rachdi,et al. Local smoothing regression with functional data , 2007, Comput. Stat..
[8] P. Vieu,et al. NONPARAMETRIC REGRESSION ON FUNCTIONAL DATA: INFERENCE AND PRACTICAL ASPECTS , 2007 .
[9] P. Vieu,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[10] Philippe Vieu,et al. Semi-functional partial linear regression , 2006 .
[11] P. Vieu,et al. Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models , 2006 .
[12] Z. Cai,et al. Strong uniform consistency of nonparametric estimation of the censored conditional mode function , 2005 .
[13] J. Beirlant,et al. Nonparametric Estimation of Conditional Quantiles , 2005 .
[14] D. Mason,et al. General Asymptotic Confidence Bands Based on Kernel-type Function Estimators , 2004 .
[15] P. Vieu,et al. Functional nonparametric model for time series: a fractal approach for dimension reduction , 2002 .
[16] Frédéric Ferraty,et al. Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés , 2000 .
[17] Y. Yatracos,et al. Rates of convergence of estimates, Kolmogorov's entropy and the dimensionality reduction principle in regression , 1997 .
[18] J. Ramsay,et al. Functional Data Analysis , 1997 .
[19] Leonid A. Bunimovich,et al. Coupled map lattices: some topological and ergodic properties , 1997 .
[20] P. Vieu,et al. LOCATION OF PARTICULAR POINTS IN NON‐PARAMETRIC REGRESSION ANALYSIS , 1995 .
[21] J. Kuelbs,et al. Metric entropy and the small ball problem for Gaussian measures , 1993 .
[22] M. Samanta,et al. Non-parametric estimation of conditional quantiles , 1989 .
[23] G. Roussas. Nonparametric Estimation of the Transition Distribution Function of a Markov Process , 1969 .
[24] Lars Onsager,et al. Fluctuations and Irreversible Processes , 1953 .
[25] P. Vieu,et al. Estimation non-paramétrique de la fonction de hasard avec variable explicative fonctionnelle. [Nonparametric estimation of the hazard function with explanatory functional variable] , 2008 .
[26] Sophie Dabo-Niang,et al. Estimation non paramétrique du mode conditionnel pour variable explicative fonctionnelle , 2007 .
[27] Frédéric Ferraty,et al. Conditional Quantiles for Dependent Functional Data with Application to the Climatic El Niño Phenomenon , 2005 .
[28] E. Masry. Nonparametric regression estimation for dependent functional data: asymptotic normality , 2005 .
[29] Sophie Dabo-Niang,et al. Estimation non paramétrique de la régression avec variable explicative dans un espace métrique , 2003 .
[30] V. Tikhomirov,et al. ε-Entropy and ε-Capacity , 1993 .