An aerodynamic study of the CFHT dome using water tunnel tests and CFD

Studies of astronomical seeing at the Canada France Hawaii Telescope (CFHT) site, from both inside and outside the dome, show that the full potential of the excellent seeing conditions at the CFHT site has never been fully exploited. These studies indicate that this is due to the classical unvented hemispherical CFHT dome. Tests have been performed to identify the causes of the “pathologies” revealed by these seeing studies and to find ways of mitigating them. In particular, we have investigated installing vents in the dome skin to improve air exchange between outside and inside the enclosure. A number of vent geometries were tested using water tunnel models at the University of Washington Aerodynamics Laboratory (UWAL). Relative flushing times for various dome slit to prevailing wind directions were compared for the different vent geometries. The general flow characteristics observed with these low Reynolds number tests were compared with computational fluid dynamics (CFD) simulations of the CFHT dome performed in collaboration with the Thirty Meter Telescope (TMT) project, as well as low-speed wind-tunnel tests and visualization of the flow around the actual observatory building.