An experimental investigation of model-based parameter optimisation: SPO and beyond

This work experimentally investigates model-based approaches for optimising the performance of parameterised randomised algorithms. We restrict our attention to procedures based on Gaussian process models, the most widely-studied family of models for this problem. We evaluated two approaches from the literature, and found that sequential parameter optimisation (SPO) [4] offered the most robust performance. We then investigated key design decisions within the SPO paradigm, characterising the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and log-transformed response values. Finally, in a domain for which performance results for other (model-free) parameter optimisation approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance.

[1]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[2]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[3]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[4]  Thomas J. Santner,et al.  Sequential design of computer experiments to minimize integrated response functions , 2000 .

[5]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[6]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[7]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.

[8]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[9]  Ramana V. Grandhi,et al.  Improved Distributed Hypercube Sampling , 2002 .

[10]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[11]  Holger H. Hoos,et al.  UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.

[12]  Charles Audet,et al.  Finding Optimal Algorithmic Parameters Using the Mesh Adaptive Direct Search Algorithm , 2004 .

[13]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[14]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[15]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[16]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[17]  Thomas Bartz-Beielstein,et al.  Considerations of Budget Allocation for Sequential Parameter Optimization (SPO) , 2006 .

[18]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[19]  CHARLES AUDET,et al.  Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..

[20]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[21]  Thomas Bartz-Beielstein,et al.  Experimental research in evolutionary computation , 2007, GECCO '07.

[22]  Thomas Stützle,et al.  Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement , 2007, Hybrid Metaheuristics.

[23]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[24]  F. Hutter,et al.  ParamILS: An Automatic Algorithm Configuration Framework , 2009, J. Artif. Intell. Res..

[25]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[26]  Thomas Bartz-Beielstein,et al.  The Sequential Parameter Optimization Toolbox , 2010, Experimental Methods for the Analysis of Optimization Algorithms.