Sampling Constrained Probability Distributions Using Spherical Augmentation

[1]  M. Girolami,et al.  Markov Chain Monte Carlo from Lagrangian Dynamics , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[2]  Babak Shahbaba,et al.  Distributed Stochastic Gradient MCMC , 2014, ICML.

[3]  Babak Shahbaba,et al.  Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.

[4]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[5]  Babak Shahbaba,et al.  Split Hamiltonian Monte Carlo , 2011, Stat. Comput..

[6]  Yee Whye Teh,et al.  Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex , 2013, NIPS.

[7]  Max Welling,et al.  Distributed and Adaptive Darting Monte Carlo through Regenerations , 2013, AISTATS.

[8]  M. Girolami,et al.  Geodesic Monte Carlo on Embedded Manifolds , 2013, Scandinavian journal of statistics, theory and applications.

[9]  G. Roberts,et al.  MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.

[10]  Mátyás A. Sustik,et al.  Sparse Approximate Manifolds for Differential Geometric MCMC , 2012, NIPS.

[11]  M. Girolami,et al.  Lagrangian Dynamical Monte Carlo , 2012, 1211.3759.

[12]  W. K. Yuen,et al.  Optimal scaling of random walk Metropolis algorithms with discontinuous target densities , 2012, 1210.5090.

[13]  Ari Pakman,et al.  Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians , 2012, 1208.4118.

[14]  Raquel Urtasun,et al.  A Family of MCMC Methods on Implicitly Defined Manifolds , 2012, AISTATS.

[15]  Yichuan Zhang,et al.  Quasi-Newton Methods for Markov Chain Monte Carlo , 2011, NIPS.

[16]  J. M. Sanz-Serna,et al.  Hybrid Monte Carlo on Hilbert spaces , 2011 .

[17]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[18]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[19]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[20]  Alexandre H. Thi'ery,et al.  Optimal Scaling and Diffusion Limits for the Langevin Algorithm in High Dimensions , 2011, 1103.0542.

[21]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[22]  Christian P. Robert,et al.  A vanilla Rao--Blackwellization of Metropolis--Hastings algorithms , 2009, 0904.2144.

[23]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[24]  Liam Paninski,et al.  Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains , 2011, Neural Computation.

[25]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[26]  Andrew Gelfand,et al.  On Herding and the Perceptron Cycling Theorem , 2010, NIPS.

[27]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[28]  Ryan P. Adams,et al.  Elliptical slice sampling , 2009, AISTATS.

[29]  Chris Hans Bayesian lasso regression , 2009 .

[30]  Chao Yang,et al.  Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .

[31]  G. Roberts,et al.  Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets , 2009, 0909.0856.

[32]  Ruslan Salakhutdinov,et al.  Evaluation methods for topic models , 2009, ICML '09.

[33]  Max Welling,et al.  Herding dynamical weights to learn , 2009, ICML '09.

[34]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[35]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[36]  G. Roberts,et al.  Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities , 2008 .

[37]  Jean-Michel Marin,et al.  Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..

[38]  R. Douc,et al.  Minimum variance importance sampling via Population Monte Carlo , 2007 .

[39]  Yee Whye Teh,et al.  A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2006, NIPS.

[40]  Max Welling,et al.  Accelerated Variational Dirichlet Process Mixtures , 2006, NIPS.

[41]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[42]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[43]  Anthony Brockwell Parallel Markov chain Monte Carlo Simulation by Pre-Fetching , 2006 .

[44]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[45]  Radford M. Neal The Short-Cut Metropolis Method , 2005, math/0508060.

[46]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[47]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[48]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[49]  Radford M. Neal Slice Sampling , 2000, physics/0009028.

[50]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[51]  N. Chopin A sequential particle filter method for static models , 2002 .

[52]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[53]  Nando de Freitas,et al.  Variational MCMC , 2001, UAI.

[54]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[55]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[56]  G. Roberts,et al.  Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .

[57]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[58]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[59]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[60]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[61]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[62]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[63]  Radford M. Neal Bayesian learning for neural networks , 1995 .

[64]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[65]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[66]  J. Friedman,et al.  [A Statistical View of Some Chemometrics Regression Tools]: Response , 1993 .

[67]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[68]  A. Kennedy,et al.  Hybrid Monte Carlo , 1988 .

[69]  M. West On scale mixtures of normal distributions , 1987 .

[70]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[71]  J. Munkres,et al.  Calculus on Manifolds , 1965 .