Sampling Constrained Probability Distributions Using Spherical Augmentation
暂无分享,去创建一个
[1] M. Girolami,et al. Markov Chain Monte Carlo from Lagrangian Dynamics , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[2] Babak Shahbaba,et al. Distributed Stochastic Gradient MCMC , 2014, ICML.
[3] Babak Shahbaba,et al. Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.
[4] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[5] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[6] Yee Whye Teh,et al. Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex , 2013, NIPS.
[7] Max Welling,et al. Distributed and Adaptive Darting Monte Carlo through Regenerations , 2013, AISTATS.
[8] M. Girolami,et al. Geodesic Monte Carlo on Embedded Manifolds , 2013, Scandinavian journal of statistics, theory and applications.
[9] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[10] Mátyás A. Sustik,et al. Sparse Approximate Manifolds for Differential Geometric MCMC , 2012, NIPS.
[11] M. Girolami,et al. Lagrangian Dynamical Monte Carlo , 2012, 1211.3759.
[12] W. K. Yuen,et al. Optimal scaling of random walk Metropolis algorithms with discontinuous target densities , 2012, 1210.5090.
[13] Ari Pakman,et al. Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians , 2012, 1208.4118.
[14] Raquel Urtasun,et al. A Family of MCMC Methods on Implicitly Defined Manifolds , 2012, AISTATS.
[15] Yichuan Zhang,et al. Quasi-Newton Methods for Markov Chain Monte Carlo , 2011, NIPS.
[16] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[17] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[18] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[19] Jeffrey S. Rosenthal,et al. Optimal Proposal Distributions and Adaptive MCMC , 2011 .
[20] Alexandre H. Thi'ery,et al. Optimal Scaling and Diffusion Limits for the Langevin Algorithm in High Dimensions , 2011, 1103.0542.
[21] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[22] Christian P. Robert,et al. A vanilla Rao--Blackwellization of Metropolis--Hastings algorithms , 2009, 0904.2144.
[23] Radford M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .
[24] Liam Paninski,et al. Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains , 2011, Neural Computation.
[25] Francis R. Bach,et al. Online Learning for Latent Dirichlet Allocation , 2010, NIPS.
[26] Andrew Gelfand,et al. On Herding and the Perceptron Cycling Theorem , 2010, NIPS.
[27] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[28] Ryan P. Adams,et al. Elliptical slice sampling , 2009, AISTATS.
[29] Chris Hans. Bayesian lasso regression , 2009 .
[30] Chao Yang,et al. Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .
[31] G. Roberts,et al. Optimal scaling of the random walk Metropolis on elliptically symmetric unimodal targets , 2009, 0909.0856.
[32] Ruslan Salakhutdinov,et al. Evaluation methods for topic models , 2009, ICML '09.
[33] Max Welling,et al. Herding dynamical weights to learn , 2009, ICML '09.
[34] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[35] G. Casella,et al. The Bayesian Lasso , 2008 .
[36] G. Roberts,et al. Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities , 2008 .
[37] Jean-Michel Marin,et al. Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..
[38] R. Douc,et al. Minimum variance importance sampling via Population Monte Carlo , 2007 .
[39] Yee Whye Teh,et al. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2006, NIPS.
[40] Max Welling,et al. Accelerated Variational Dirichlet Process Mixtures , 2006, NIPS.
[41] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[42] J. Møller,et al. An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .
[43] Anthony Brockwell. Parallel Markov chain Monte Carlo Simulation by Pre-Fetching , 2006 .
[44] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[45] Radford M. Neal. The Short-Cut Metropolis Method , 2005, math/0508060.
[46] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[47] S. Walker. Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .
[48] Matthew J. Beal. Variational algorithms for approximate Bayesian inference , 2003 .
[49] Radford M. Neal. Slice Sampling , 2000, physics/0009028.
[50] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[51] N. Chopin. A sequential particle filter method for static models , 2002 .
[52] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[53] Nando de Freitas,et al. Variational MCMC , 2001, UAI.
[54] G. Warnes. The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .
[55] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[56] G. Roberts,et al. Adaptive Markov Chain Monte Carlo through Regeneration , 1998 .
[57] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[58] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[59] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[60] David Bruce Wilson,et al. Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.
[61] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[62] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[63] Radford M. Neal. Bayesian learning for neural networks , 1995 .
[64] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[65] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[66] J. Friedman,et al. [A Statistical View of Some Chemometrics Regression Tools]: Response , 1993 .
[67] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[68] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[69] M. West. On scale mixtures of normal distributions , 1987 .
[70] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[71] J. Munkres,et al. Calculus on Manifolds , 1965 .