Architecture multi-agents pour le pilotage automatique des voiliers de compétition et Extensions algébriques des réseaux de Petri. (Multi-agents architecture for the self-steering of race sailing boats and algebraically generalized Petri nets)

Cette these s'attaque dans une premiere partie au probleme du pilotage automatique des voiliers de competition en s'appuyant sur la realite virtuelle qui, via la simulation, permet de s'affranchir de tests en situation reelle generalement couteux, contraignants et risques. Une architecture multi-agents est proposee ainsi que sa modelisation en termes de reseaux de Petri. Une deuxieme partie est consacree a la presentation et a l'etude de plusieurs extensions algebriques de ces reseaux dans le but initial de prendre en charge certaines caracteristiques des systemes a evenements discrets non couvertes par les reseaux places/transitions usuels. Un etat de l'art presente differentes approches du probleme du pilotage des voiliers et souligne son caractere complexe. Partant du constat que malgre tout, l'homme parvient generalement a faire face a la plupart des situations rencontrees en mer, nous proposons d'asseoir notre systeme sur une expertise tres fine de la pratique du barreur de competition. Cette derniere permet d'identifier et de caracteriser les elements importants lies a la technique de barre. Nous proposons ensuite une architecture multi-agents dont la partie commande est basee sur trois agents autonomes, asynchrones et concurrents ainsi que sa modelisation par reseaux de Petri synchronises. Le systeme est implemente sous AReVi, moteur de simulation d'objets actifs et de rendu 3D developpe au CERV. L'experimentation montre que le barreur virtuel ainsi cree assure un niveau de securite interessant pour un coureur au large en reagissant aux sollicitations de son voilier d'une maniere proche de celle d'un homme. Le gain en performance semble plus limite du fait, en particulier, des faiblesses du modele de bateau implemente mais pourrait s'averer interessant sur un voilier reel. Dans la deuxieme partie de cette these nous proposons differentes extensions algebriques des reseaux de Petri. Nous choisissons tout d'abord d'utiliser un groupe a la place de l'algebre des places usuelle des reseaux de Petri et d'en priver l'acces a l'element neutre pour interdire certaines transitions. Ces reseaux, appeles strict-group-nets, etendent en particulier les reseaux de Petri purs si on choisit pour groupe l'ensemble des entiers relatifs. L'adjonction d'arcs dits inconditionnels conduit aux group-nets et permet d'englober egalement les reseaux impurs. Nous montrons que les problemes de savoir si les Z-nets et les strict-Z-nets sont bornes et si une place de ces reseaux est bornee sont decidables via la definition d'un arbre proche de celle d'un arbre de couverture. La notion de ressource disparaissant dans ces nouveaux reseaux, plutot que de choisir une algebre a priori nous cherchons a caracteriser les algebres permettant de singer le comportement des reseaux de Petri usuels. Cette demarche conduit aux reseaux lexicographiques pour lesquels la notion de ressource reste etrange car on peut consommer indefiniment strictement. Nous montrons que les reseaux lexicographiques ont la puissance des machines de Turing et que les reseaux lexicographiques bornes sont les reseaux de Petri bornes. Nous demontrons enfin que le probleme de la synthese trouve une reponse polynomiale pour les Z/2Z-nets ainsi que pour les reseaux lexicographiques en termes de meilleure approximation d'un langage regulier donne.

[1]  Oscar Calvo,et al.  Fuzzy control of a sailboat , 1997, Int. J. Approx. Reason..

[2]  Raymond E. Miller,et al.  Homomorphisms between Models of Parallel Computation , 1982, J. Comput. Syst. Sci..

[3]  Hugo A. Myers Theory of Sailing Applied to Ocean Racing Yachts , 1975 .

[4]  Wil M. P. van der Aalst,et al.  The Application of Petri Nets to Workflow Management , 1998, J. Circuits Syst. Comput..

[5]  Sylviane R. Schwer Decidabilite de l'algebricite de langages associes aux reseaux de Petri , 1985 .

[6]  Asma Ghaffari Les réseaux de Petri pour le contrôle des systèmes à événements discrets , 2003 .

[7]  Matthias Jantzen,et al.  On the hierarchy of Petri net languages , 1979, RAIRO Theor. Informatics Appl..

[8]  Carl A. Gunter,et al.  Nets as Tensor Theories , 1989 .

[9]  Joël Ouaknine,et al.  Nets with Tokens which Carry Data , 2008, Fundam. Informaticae.

[10]  Robert Ivor John,et al.  Fuzzy Logic Control System for Autonomous Sailboats , 2007, 2007 IEEE International Fuzzy Systems Conference.

[11]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[12]  Kostia Roncin,et al.  Dynamic simulation of two sailing boats in match racing , 2004 .

[13]  Karen Zita Haigh,et al.  A layered architecture for office delivery robots , 1997, AGENTS '97.

[14]  John E. Hopcroft,et al.  On the Reachability Problem for 5-Dimensional Vector Addition Systems , 1976, Theor. Comput. Sci..

[15]  Manuel Silva Suárez,et al.  Linear Algebraic and Linear Programming Techniques for the Analysis of Place or Transition Net Systems , 1996, Petri Nets.

[16]  F. Vernadat,et al.  The tool TINA – Construction of abstract state spaces for petri nets and time petri nets , 2004 .

[17]  Cédric Join,et al.  Model-Free Control of Shape Memory Alloys Antagonistic Actuators , 2008 .

[18]  Alessandro Giua,et al.  A Survey of Petri Net Methods for Controlled Discrete Event Systems , 1997, Discret. Event Dyn. Syst..

[19]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[20]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[21]  Thierry Morineau L'émergence d'une perspective écologique en psychologie ergonomique. Distinction entre différents niveaux de contrôle cognitif dans l activité , 2005, Rev. d'Intelligence Artif..

[22]  Richard M. Karp,et al.  Parallel Program Schemata , 1969, J. Comput. Syst. Sci..

[23]  Bruce H. Krogh,et al.  Synthesis of feedback control logic for a class of controlled Petri nets , 1990 .

[24]  Philippe Darondeau,et al.  The Synthesis Problem for Elementary Net Systems is NP-Complete , 1997, Theor. Comput. Sci..

[25]  M. Sugeno,et al.  Derivation of Fuzzy Control Rules from Human Operator's Control Actions , 1983 .

[26]  Michel Hack,et al.  Decidability Questions for Petri Nets , 1975, Outstanding Dissertations in the Computer Sciences.

[27]  Parosh Aziz Abdulla,et al.  General decidability theorems for infinite-state systems , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[28]  Philippe Darondeau,et al.  The synthesis of Petri nets from path-automatic specifications , 2004, Inf. Comput..

[30]  David P. Miller,et al.  Experiences with an architecture for intelligent, reactive agents , 1995, J. Exp. Theor. Artif. Intell..

[31]  Kurt Jensen,et al.  Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol. 2, Analysis Methods , 1992 .

[32]  G. Michele Pinna,et al.  Synthesis of Nets with Inhibitor Arcs , 1997, CONCUR.

[33]  G. Guillou,et al.  Group-nets et réseaux lexicographiques. Expressivité et décidabilité , 2009, Tech. Sci. Informatiques.

[34]  Robert Lorenz,et al.  Modelling and Control with Modules of Signal Nets , 2003, Lectures on Concurrency and Petri Nets.

[35]  Philippe Schnoebelen,et al.  Fundamental Structures in Well-Structured Infinite Transition Systems , 1998, LATIN.

[36]  T. W. Vaneck Fuzzy guidance controller for an autonomous boat , 1997 .

[37]  Glynn Winskel,et al.  Models for Concurrency , 1994 .

[38]  Eric Badouel,et al.  An Axiomatization of the Token Game Based on Petri Algebras , 2007, Fundam. Informaticae.

[39]  E. C. Yeh,et al.  Fuzzy Control For Self-steering Of A Sailboat , 1992, Singapore International Conference on Intelligent Control and Instrumentation [Proceedings 1992].

[40]  W. H. Warden A control system model for autonomous sailboat navigation , 1991, IEEE Proceedings of the SOUTHEASTCON '91.

[41]  Alan A. Desrochers,et al.  Modeling and analysis of multi-agent systems using petri nets , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[42]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[43]  Pierre Chevaillier,et al.  Application des réseaux de Petri à la modélisation des systèmes multi-agents de contrôle , 1999 .

[44]  Philippe Schnoebelen,et al.  Reset Nets Between Decidability and Undecidability , 1998, ICALP.

[45]  Gabriel Juhás The essence of Petri nets and transition systems through Abelian groups , 1998, Electron. Notes Theor. Comput. Sci..

[46]  René David,et al.  Continuous and Hybrid Petri Nets , 1998, J. Circuits Syst. Comput..

[47]  Philippe Darondeau,et al.  Polynomial Algorithms for the Synthesis of Bounded Nets , 1995, TAPSOFT.

[48]  Alessandro Giua,et al.  Generalized mutual exclusion contraints on nets with uncontrollable transitions , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[49]  Tadao Kasami,et al.  Some Decision Problems Related to the Reachability Problem for Petri Nets , 1976, Theor. Comput. Sci..

[50]  Cédric Buche,et al.  Comportements perceptifs d'acteurs virtuels autonomes : une application des cartes cognitives , 2005, Tech. Sci. Informatiques.

[51]  M. L. V. Aartrijk,et al.  Learning to Sail , 2003 .

[52]  Marc Parenthoën,et al.  Animation phénoménologique de la mer - une approche énactive - . (Phenomenological animation of the sea - an enactive approach - ) , 2004 .

[53]  Cédric Join,et al.  Model-free control and intelligent PID controllers: towards a possible trivialization of nonlinear control? , 2009, ArXiv.

[54]  Jean-Yves Morel,et al.  Algebraically structured colored Petri nets to model sequential processes , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[55]  Hartmut Ehrig,et al.  A Uniform Approach to Petri Nets , 1997, Foundations of Computer Science: Potential - Theory - Cognition.

[56]  Joseph Sifakis,et al.  Le contrôle des systèmes asynchrones : concepts, propriétés, analyse statique , 1979 .

[57]  C. Petri Kommunikation mit Automaten , 1962 .

[58]  S. Rao Kosaraju,et al.  Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.

[59]  J A Keuning,et al.  A Mathematical Model for the Tacking Maneuver of a Sailing Yacht , 2022 .

[60]  Sylviane R. Schwer On the Rationality of Petri Net Languages , 1986, Inf. Process. Lett..

[61]  José Meseguer,et al.  Petri Nets Are Monoids , 1990, Inf. Comput..

[62]  Hartmut Ehrig,et al.  Behavior and Realization Construction for Petri Nets Based on Free Monoid and Power Set Graphs , 2001, Unifying Petri Nets.

[63]  Hans-Michael Hanisch,et al.  A Signal Extension for Petri Nets and its Use in Controller Design , 2000, Fundam. Informaticae.

[64]  Serge Huberson,et al.  Sailing Boat Performance Prediction , 2005 .

[65]  James S. Albus,et al.  NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) , 1989 .

[66]  Tobias Pröll,et al.  Autonomous sailboat navigation for short course racing , 2008, Robotics Auton. Syst..

[67]  Manuel Silva Suárez,et al.  On the Computation of Structural Synchronic Invariants in P/T Nets , 1988, European Workshop on Applications and Theory of Petri Nets.

[68]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[69]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[70]  Philippe Darondeau,et al.  Stratified Petri Nets , 1997, FCT.

[71]  Luciano Lavagno,et al.  Complete state encoding based on the theory of regions , 1996, Proceedings Second International Symposium on Advanced Research in Asynchronous Circuits and Systems.

[72]  José Meseguer,et al.  From Petri Nets to Linear Logic through Categories: A Survey , 1991, Int. J. Found. Comput. Sci..

[73]  Claudia Ermel,et al.  Implementation of Parameterized Net Classes with the Petri Net Kernel of the »Petri Net Baukasten« , 2001, Unifying Petri Nets.

[74]  Peter Radford,et al.  Petri Net Theory and the Modeling of Systems , 1982 .

[75]  W. M. Wonham,et al.  A hybrid approach to supervisory control of discrete event systems coupling RW supervisors to Petri nets , 2006 .

[76]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[77]  Jean-Michel Hoc,et al.  Cognitive Control Levels in Air Traffic Radar Controller Activity , 2003 .

[78]  Gabriel Juhás Petri nets with generalized algebra: a comparison , 1999, EXPRESS.

[79]  Rüdiger Valk Self-Modifying Nets, a Natural Extension of Petri Nets , 1978, ICALP.

[80]  Philippe Poignet,et al.  Moving horizon control for biped robots without reference trajectory , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[81]  Alan A. Desrochers,et al.  Applications of Petri Nets in Manufacturing Systems: Modeling, Control, and Performance Analysis , 1994 .

[82]  Diederich Hinrichsen,et al.  Modelling, state space analysis, stability and robustness , 2005 .

[83]  Eric Badouel,et al.  Nets Enriched over Closed Monoidal Structures , 2003, ICATPN.

[84]  Michael Westergaard,et al.  CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets , 2003, ICATPN.

[85]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[86]  Reid Simmons,et al.  Experience with a Task Control Architecture for Mobile Robots , 1989 .

[87]  Jana Kosecka,et al.  Control of Discrete Event Systems , 1992 .

[88]  Nicola Muscettola,et al.  IDEA: Planning at the Core of Autonomous Reactive Agents , 2002 .

[89]  Goulven Guillou,et al.  Modèle multi-agents pour le pilotage temps réel d'un voilier , 2007 .

[90]  Stephen A. Edwards,et al.  The synchronous languages 12 years later , 2003, Proc. IEEE.