Precise ion energy control with tailored waveform biasing for atomic scale processing

Anisotropic plasma-enhanced atomic layer etching (ALE) requires directional ions with a well-defined ion energy to remove materials in a highly selective and self-limiting fashion. In many plasma etching systems, the ion energy is controlled using radio-frequency (13.56 MHz) sinusoidal waveform biasing. However, this yields ions with a broad energy distribution, while also inducing electron heating mechanisms that can affect the ion flux. In this work, we report on precise ion energy control—independent of the ion flux—using low-frequency (LF: 100 kHz) tailored bias voltage waveforms in a commercial remote plasma reactor. A prototype LF bias generator has been used to apply tailored waveforms consisting of a positive voltage pulse and a negative linear voltage ramp. These waveforms yielded ions having narrow energy distributions (7 ± 1 eV full-width-at-half-maximum) measured on dielectric SiO2 substrates for ion energies up to 200 eV in collisionless Ar plasmas. The mono-energetic ions were used to etch SiO2 thin films by physical sputtering. In these sputter etch experiments, the ability to accurately control the ion energy in the <100 eV range is demonstrated to allow for a more precise determination of sputter thresholds, which serve as valuable input for the design of novel ALE chemistries. The feasibility of performing anisotropic plasma etching using LF tailored waveform biasing was established by etching a SiO2 layer on a 3D trench nanostructure. The potential merits of this technique for the field of atomic scale processing are discussed.

[1]  M. Verheijen,et al.  Plasma-Assisted ALD of Highly Conductive HfNx: On the Effect of Energetic Ions on Film Microstructure , 2020, Plasma Chemistry and Plasma Processing.

[2]  A. Tünnermann,et al.  Effect of an electric field during the deposition of silicon dioxide thin films by plasma enhanced atomic layer deposition: an experimental and computational study. , 2020, Nanoscale.

[3]  W. Kessels,et al.  Status and prospects of plasma-assisted atomic layer deposition , 2019, Journal of Vacuum Science & Technology A.

[4]  W. Kessels,et al.  Energetic ions during plasma-enhanced atomic layer deposition and their role in tailoring material properties , 2019, Plasma Sources Science and Technology.

[5]  Virginia R. Anderson,et al.  In situ studies of low temperature atomic level processing of GaN surfaces for atomic layer epitaxial growth , 2019, Journal of Vacuum Science & Technology A.

[6]  N. Possémé,et al.  Topographically selective deposition , 2019, Applied Physics Letters.

[7]  R. Gottscho,et al.  Atomic Layer Etching: Rethinking the Art of Etch. , 2018, The journal of physical chemistry letters.

[8]  Suman Datta,et al.  The era of hyper-scaling in electronics , 2018, Nature Electronics.

[9]  G. Leusink,et al.  Perspective: New process technologies required for future devices and scaling , 2018 .

[10]  M. Verheijen,et al.  Low resistivity HfNx grown by plasma-assisted ALD with external rf substrate biasing , 2018 .

[11]  Adriana Szeghalmi,et al.  Tuning Material Properties of Oxides and Nitrides by Substrate Biasing during Plasma-Enhanced Atomic Layer Deposition on Planar and 3D Substrate Topographies , 2018, ACS applied materials & interfaces.

[12]  R. Gottscho,et al.  Applying sputtering theory to directional atomic layer etching , 2018 .

[13]  M. Baklanov,et al.  Silicon dioxide and low-k material sputtering in dual frequency inductive discharge by argon ions with energies from 16 to 200 eV , 2018 .

[14]  R. Wise,et al.  Predicting synergy in atomic layer etching , 2017 .

[15]  W. Kessels,et al.  Atomic Layer Deposition of Wet-Etch Resistant Silicon Nitride Using Di(sec-butylamino)silane and N2 Plasma on Planar and 3D Substrate Topographies. , 2017, ACS applied materials & interfaces.

[16]  S. Bent,et al.  A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation. , 2016, ACS nano.

[17]  R. Gottscho,et al.  Overview of atomic layer etching in the semiconductor industry , 2015 .

[18]  R. Gottscho,et al.  Highly Selective Directional Atomic Layer Etching of Silicon , 2015 .

[19]  G. Oehrlein,et al.  Atomic Layer Etching at the Tipping Point: An Overview , 2015 .

[20]  Hcm Harm Knoops,et al.  Atomic Layer Etching: What Can We Learn from Atomic Layer Deposition? , 2015 .

[21]  Vincent M. Donnelly,et al.  Plasma etching: Yesterday, today, and tomorrow , 2013 .

[22]  D. J. Economou Tailored ion energy distributions on plasma electrodes , 2013 .

[23]  Wmm Erwin Kessels,et al.  Substrate-biasing during plasma-assisted atomic layer deposition to tailor metal-oxide thin film growth , 2013 .

[24]  C. Chung,et al.  Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge , 2012 .

[25]  U. Czarnetzki,et al.  Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments , 2012 .

[26]  U. Czarnetzki,et al.  Coupling effects in inductive discharges with radio frequency substrate biasing , 2012 .

[27]  C. Mahony,et al.  Retarding field energy analyser ion current calibration and transmission , 2011 .

[28]  U. Czarnetzki,et al.  The electrical asymmetry effect in capacitively coupled radio-frequency discharges , 2011 .

[29]  A. Wendt,et al.  Tailored ion energy distributions at an rf-biased plasma electrode , 2010 .

[30]  M. Seah,et al.  Sputtering yields of compounds using argon ions , 2010 .

[31]  A. von Keudell,et al.  Calibration of a miniaturized retarding field analyzer for low-temperature plasmas: geometrical transparency and collisional effects , 2010 .

[32]  C. Chung,et al.  Effects of rf-bias power on plasma parameters in a low gas pressure inductively coupled plasma , 2009 .

[33]  Van de Sanden,et al.  Accurate control of ion bombardment in remote plasmas using pulse- shaped biasing , 2009 .

[34]  Sbs Stephan Heil,et al.  In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition , 2009 .

[35]  D. Gahan,et al.  Comparison of plasma parameters determined with a Langmuir probe and with a retarding field energy analyzer , 2008 .

[36]  Jung-hyung Kim,et al.  The effects of radio-frequency bias on electron density in an inductively coupled plasma reactor , 2007 .

[37]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[38]  M. Suzuki,et al.  Sputter Etching Rate Ratio of Si to SiO2 using Mesh-Replica Method , 2002 .

[39]  T. W. Hamilton,et al.  Ion energy distributions at rf-biased wafer surfaces , 2002 .

[40]  A. Wendt,et al.  Control of ion energy distribution at substrates during plasma processing , 2000 .

[41]  Marcus F. Doemling,et al.  Using a quartz crystal microbalance for low energy ion beam etching studies , 2000 .

[42]  M. Lieberman,et al.  Ion energy distributions in rf sheaths; review, analysis and simulation , 1999 .

[43]  H. Grabke,et al.  Ion sputter rates and yields for iron-, chromium- and aluminium oxide layers , 1994 .

[44]  T. Nenadovic,et al.  Sputtering and surface topography of oxides , 1990 .

[45]  H. Bach Ion beam sputtering of silicate glasses and oxides , 1988 .

[46]  E. Fossum,et al.  Sputtering of silicon dioxide near threshold , 1988 .

[47]  H. F. Winters,et al.  Chemical sputtering of fluorinated silicon , 1981 .

[48]  M. Cantagrel,et al.  Argon ion etching in a reactive gas , 1973 .

[49]  R. P. Edwin Measurements of the sputter rate of fused silica bombarded by argon ions of energy 12-32 keV , 1973 .

[50]  A. Bayly Secondary processes in the evolution of sputter-topographies , 1972 .

[51]  M. Tarasevich Ion beam erosion of rough glass surfaces. , 1970, Applied optics.

[52]  P. D. Davidse,et al.  Equivalent dc Sputtering Yields of Insulators , 1967 .

[53]  G. Wehner,et al.  Sputtering studies of insulators by means of Langmuir probes , 1965 .

[54]  R. Hines Radiation Effect of Positive Ion Bombardment on Glass , 1957 .