The use of biochemical markers of bone remodeling in multiple myeloma: a report of the International Myeloma Working Group

[1]  E. Terpos,et al.  Prognostic variables for survival and skeletal complications in patients with multiple myeloma osteolytic bone disease , 2010, Leukemia.

[2]  V. Hirsh,et al.  20LBA A double-blind, randomized study of denosumab versus zoledronic acid for the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma , 2009 .

[3]  M. Dimopoulos,et al.  The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[4]  E Terpos,et al.  International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple Myeloma , 2009, Leukemia.

[5]  O. Sezer Myeloma bone disease: recent advances in biology, diagnosis, and treatment. , 2009, The oncologist.

[6]  G. Roodman Pathogenesis of myeloma bone disease , 2009, Leukemia.

[7]  M. Dimopoulos,et al.  Prognostication in young and old patients with Waldenström's macroglobulinemia: importance of the International Prognostic Scoring System and of serum lactate dehydrogenase. , 2009, Clinical lymphoma & myeloma.

[8]  E. Terpos,et al.  A345 High Baseline NTX Predicts for Inferior Survival and Shorter Time to First SRE in Multiple Myeloma , 2009 .

[9]  M. Dimopoulos,et al.  The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis , 2008, Leukemia.

[10]  K. Anderson,et al.  Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma , 2008, Leukemia.

[11]  O. Sezer,et al.  Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the International Staging System in newly diagnosed symptomatic multiple myeloma , 2008, Leukemia.

[12]  M. Peters,et al.  Serum concentrations of DKK‐1 correlate with the extent of bone disease in patients with multiple myeloma , 2008, European journal of haematology.

[13]  S. Seeber,et al.  The clinical significance of soluble human leukocyte antigen class-I, ICTP, and RANKL molecules in multiple myeloma patients. , 2008, Human Immunology.

[14]  M. Thomassen,et al.  Myeloma cell expression of 10 candidate genes for osteolytic bone disease. Only overexpression of DKK1 correlates with clinical bone involvement at diagnosis , 2007, British journal of haematology.

[15]  O. Sezer,et al.  Bortezomib inhibits human osteoclastogenesis , 2007, Leukemia.

[16]  M. Dimopoulos,et al.  The effect of novel anti-myeloma agents on bone metabolism of patients with multiple myeloma , 2007, Leukemia.

[17]  S. Goranov,et al.  Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clinical correlations. , 2007, Haematologica.

[18]  C. Mancini,et al.  The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. , 2007, Blood.

[19]  Bart Barlogie,et al.  Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. , 2007, Blood.

[20]  E. Terpos,et al.  Clinical utility of biochemical markers of bone metabolism for improving the management of patients with advanced multiple myeloma. , 2007, Clinical lymphoma & myeloma.

[21]  U. Kalyoncu,et al.  Biochemical markers of bone turnover in diagnosis of myeloma bone disease , 2007, American journal of hematology.

[22]  M. Dimopoulos,et al.  Bortezomib reduces serum dickkopf‐1 and receptor activator of nuclear factor‐κB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma , 2006, British journal of haematology.

[23]  M. Dimopoulos,et al.  Serum concentrations of Dickkopf‐1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation , 2006, International journal of cancer.

[24]  O. Sezer,et al.  Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment , 2006, European journal of haematology.

[25]  D. Esseltine,et al.  Response to bortezomib and activation of osteoblasts in multiple myeloma. , 2006, Clinical lymphoma & myeloma.

[26]  M. Baccarani,et al.  First‐line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma , 2006, European journal of haematology.

[27]  M. Dimopoulos,et al.  The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio , 2005, Leukemia.

[28]  D. Esseltine,et al.  Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma , 2005, British journal of haematology.

[29]  Barbara Kruk,et al.  Correlation of osteoprotegerin and sRANKL concentrations in serum and bone marrow of multiple myeloma patients. , 2005, Archivum immunologiae et therapiae experimentalis.

[30]  F. Saad,et al.  Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  E Terpos,et al.  Myeloma bone disease: pathophysiology and management. , 2005, Annals of oncology : official journal of the European Society for Medical Oncology.

[32]  M. Zastawny,et al.  The significance of carboxy-terminal telopeptide of type I collagen (ICTP) and osteocalcin (OC) in assessment of bone disease in patients with multiple myeloma , 2005, Leukemia & lymphoma.

[33]  R. Coleman Bisphosphonates: clinical experience. , 2004, The oncologist.

[34]  J. Goldman,et al.  Autologous stem cell transplantation normalizes abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multiple myeloma , 2004, Leukemia.

[35]  L. Mileshkin,et al.  A comparison of fluorine‐18 fluoro‐deoxyglucose PET and technetium‐99m sestamibi in assessing patients with multiple myeloma , 2004, European journal of haematology.

[36]  F. Zhan,et al.  The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. , 2003, The New England journal of medicine.

[37]  M. Seibel,et al.  Markers of Bone Remodeling in Metastatic Bone Disease , 2003 .

[38]  J. Goldman,et al.  Tartrate‐resistant acid phosphatase isoform 5b: A novel serum marker for monitoring bone disease in multiple myeloma , 2003, International journal of cancer.

[39]  P. Vihko,et al.  Tartrate-resistant acid phosphatase 5B circulates in human serum in complex with alpha2-macroglobulin and calcium. , 2003, Biochemical and biophysical research communications.

[40]  O. Sezer,et al.  Serum levels of carboxy-terminal telopeptide of type-I collagen are elevated in patients with multiple myeloma showing skeletal manifestations in magnetic resonance imaging but lacking lytic bone lesions in conventional radiography. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[41]  J. Goldman,et al.  Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. , 2003, Blood.

[42]  M. Karsdal,et al.  The Type I Collagen Fragments ICTP and CTX Reveal Distinct Enzymatic Pathways of Bone Collagen Degradation , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[43]  G. Stein,et al.  Regulation of the Bone-Specific Osteocalcin Gene by p300 Requires Runx2/Cbfa1 and the Vitamin D3 Receptor but Not p300 Intrinsic Histone Acetyltransferase Activity , 2003, Molecular and Cellular Biology.

[44]  N. Malliaraki,et al.  Urinary N‐telopeptide levels in multiple myeloma patients, correlation with Tc‐99m‐sestaMIBI scintigraphy and other biochemical markers of disease activity , 2003, Hematological oncology.

[45]  R. Eastell,et al.  Biochemical markers of bone turnover and fracture prediction. , 2003 .

[46]  J. Goldman,et al.  Pamidronate is superior to ibandronate in decreasing bone resorption, interleukin‐6 and β2‐microglobulin in multiple myeloma , 2003, European journal of haematology.

[47]  N. Abildgaard,et al.  Comparison of five biochemical markers of bone resorption in multiple myeloma: elevated pre‐treatment levels of S‐ICTP and U‐Ntx are predictive for early progression of the bone disease during standard chemotherapy , 2003, British journal of haematology.

[48]  N. Malliaraki,et al.  Evaluation of bone disease in multiple myeloma: a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients. , 2002, Clinica chimica acta; international journal of clinical chemistry.

[49]  Colin R Dunstan,et al.  Serum osteoprotegerin levels in healthy controls and cancer patients. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[50]  O. Sezer,et al.  Bone resorption parameters [carboxy‐terminal telopeptide of type‐I collagen (ICTP), amino‐terminal collagen type‐I telopeptide (NTx), and deoxypyridinoline (Dpd)] in MGUS and multiple myeloma , 2002, European journal of haematology.

[51]  T. Hentunen,et al.  Serum tartrate-resistant acid phosphatase isoforms in rheumatoid arthritis. , 2002, Clinica chimica acta; international journal of clinical chemistry.

[52]  E. Thiel,et al.  Effects of long-term intravenous ibandronate therapy on skeletal-related events, survival, and bone resorption markers in patients with advanced multiple myeloma. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[53]  A. Waage,et al.  Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. , 2001, Blood.

[54]  A. Howell,et al.  Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. , 2001, Cancer journal.

[55]  P. Delmas Bone marker nomenclature. , 2001, Bone.

[56]  E. Terpos,et al.  Pamidronate increases markers of bone formation in patients with multiple myeloma in plateau phase under interferon-alpha treatment , 2001, Calcified Tissue International.

[57]  R E Coleman,et al.  Zoledronic acid reduces skeletal‐related events in patients with osteolytic metastases , 2001, Cancer.

[58]  M. Seibel,et al.  Biochemical markers of bone formation in patients with plasma cell dyscrasias and benign osteoporosis. , 2001, Clinical chemistry.

[59]  M. Seibel,et al.  Serum bone sialoprotein as a marker of tumour burden and neoplastic bone involvement and as a prognostic factor in multiple myeloma , 2001, British Journal of Cancer.

[60]  E. Terpos,et al.  Effect of pamidronate administration on markers of bone turnover and disease activity in multiple myeloma , 2000, European journal of haematology.

[61]  R. Clark,et al.  Biochemical markers of bone turnover following high-dose chemotherapy and autografting in multiple myeloma. , 2000, Blood.

[62]  J. Risteli,et al.  Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. , 2000, Bone.

[63]  R. Fonseca,et al.  Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients , 2000, British journal of haematology.

[64]  D. Kallmes,et al.  Osteocalcin-directed gene therapy for prostate-cancer bone metastasis , 2000, World Journal of Urology.

[65]  J. Rungby,et al.  Biochemical markers of bone metabolism reflect osteoclastic and osteoblastic activity in multiple myeloma , 2000, European journal of haematology.

[66]  E. Holmberg,et al.  Prognostic evaluation in multiple myeloma: an analysis of the impact of new prognostic factors , 1999, British journal of haematology.

[67]  A. Nanci,et al.  Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. , 1999, Journal of structural biology.

[68]  S. Ljunghall,et al.  Evaluation of bone disease in multiple myeloma: a comparison between the resorption markers urinary deoxypyridinoline/creatinine (DPD) and serum ICTP, and an evaluation of the DPD/osteocalcin and ICTP/osteocalcin ratios , 1999, European journal of haematology.

[69]  R. Ziegler,et al.  Novel Serum Markers of Bone Resorption: Clinical Assessment and Comparison with Established Urinary Indices , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[70]  R. Eastell,et al.  Serum galactosyl hydroxylysine as a biochemical marker of bone resorption. , 1999, Clinical chemistry.

[71]  G. Y. Daniloff,et al.  Development of an immunoassay for urinary galactosylhydroxylysine. , 1998, Journal of immunological methods.

[72]  C. Christiansen,et al.  Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. , 1998, Clinical chemistry.

[73]  A J Bailey,et al.  Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. , 1998, Bone.

[74]  M. Arning,et al.  Monitoring of multiple myeloma patients by simultaneously measuring marker substances of bone resorption and formation. , 1998, Clinica chimica acta; international journal of clinical chemistry.

[75]  R H Christenson,et al.  Biochemical markers of bone metabolism: an overview. , 1997, Clinical biochemistry.

[76]  D. Eyre,et al.  Osteoclasts generate cross-linked collagen N-telopeptides (NTx) but not free pyridinolines when cultured on human bone. , 1997, Bone.

[77]  C. Christiansen,et al.  Measurement of Bone Degradation Products in Serum Using Antibodies Reactive with an Isomerized Form of an 8 Amino Acid Sequence of the C‐Telopeptide of Type I Collagen , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[78]  N. Abildgaard,et al.  Serum markers of bone metabolism in multiple myeloma: prognostic value of the carboxy‐terminal telopeptide of type I collagen (ICTP) , 1997, British journal of haematology.

[79]  J. Apperley,et al.  Biochemical bone markers in patients with multiple myeloma. , 1996, Clinica chimica acta; international journal of clinical chemistry.

[80]  D. Eyre,et al.  Molecular basis and clinical application of biological markers of bone turnover. , 1996, Endocrine reviews.

[81]  M. Laakso,et al.  Monitoring the action of clodronate with type I collagen metabolites in multiple myeloma. , 1996, European journal of cancer.

[82]  J. Risteli,et al.  Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. , 1993, Clinical chemistry.

[83]  D. Moss Perspectives in alkaline phosphatase research. , 1992, Clinical chemistry.

[84]  D. Eyre,et al.  A specific immunoassay for monitoring human bone resorption: Quantitation of type I collagen cross‐linked N‐telopeptides in urine , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[85]  M. Young,et al.  Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. , 1992, Clinical orthopaedics and related research.

[86]  B. Smedsrød,et al.  Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. , 1990, The Biochemical journal.

[87]  J. Lian,et al.  Carboxylated calcium-binding proteins and vitamin K. , 1980, The New England journal of medicine.

[88]  C. Li,et al.  Biochemical properties of tartrate-resistant acid phosphatase in serum of adults and children. , 1978, Clinical chemistry.

[89]  A. Haddow,et al.  BLOOD-GROUP AND DISEASE. , 1964, Lancet.

[90]  A. Sjoerdsma,et al.  Gastrointestinal absorption and renal excretion of hydroxyproline peptides. , 1962, Lancet.

[91]  R. Nuti,et al.  The effect of zoledronic acid on serum osteoprotegerin in early stage multiple myeloma. , 2006, Haematologica.

[92]  M. Seibel Biochemical markers of bone turnover: part I: biochemistry and variability. , 2005, The Clinical biochemist. Reviews.

[93]  R. Eastell,et al.  Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. , 2004, Bone.

[94]  S. Sun,et al.  Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. , 2001, Clinical chemistry.

[95]  G. Nelsestuen,et al.  Vitamin K-dependent proteins. , 2000, Vitamins and hormones.

[96]  S. Chavali,et al.  Mutations and promoter methylation status of NPM1 in myeloproliferative disorders , 2000 .

[97]  J. Risteli,et al.  Assays of type I procollagen domains and collagen fragments: problems to be solved and future trends. , 1997, Scandinavian journal of clinical and laboratory investigation. Supplementum.

[98]  M. Zago,et al.  A pharmacological study on pegylated asparaginase used in front-line treatment of children with acute lymphoblastic leukemia , 1998 .

[99]  P. Gallop,et al.  Cross-linking in collagen and elastin. , 1984, Annual review of biochemistry.