On the pathway of mineral deposition in larval zebrafish caudal fin bone.

[1]  T. Anada,et al.  Osteoconductive property of a mechanical mixture of octacalcium phosphate and amorphous calcium phosphate. , 2014, ACS applied materials & interfaces.

[2]  R. Adams,et al.  Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone , 2014, Nature.

[3]  J. V. van Leeuwen,et al.  Proteomics Analysis of the Zebrafish Skeletal Extracellular Matrix , 2014, PloS one.

[4]  P. Fratzl,et al.  Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae , 2014, Biophysical journal.

[5]  S. Weiner,et al.  Initial stages of calcium uptake and mineral deposition in sea urchin embryos , 2013, Proceedings of the National Academy of Sciences.

[6]  L. Appelbaum,et al.  Zebrafish as a Model for Monocarboxyl Transporter 8-Deficiency* , 2012, The Journal of Biological Chemistry.

[7]  N. Ferrara,et al.  S1P1 inhibits sprouting angiogenesis during vascular development , 2012, Development.

[8]  S. Fisher,et al.  Evolution of the bone gene regulatory network. , 2012, Current opinion in genetics & development.

[9]  M. Stevens,et al.  The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation , 2012, Proceedings of the National Academy of Sciences.

[10]  Tom T. Chen,et al.  ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1 , 2012, Nature Medicine.

[11]  S. P. Singh,et al.  Regeneration of amputated zebrafish fin rays from de novo osteoblasts. , 2012, Developmental cell.

[12]  G. Lajoie,et al.  Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. , 2011, Journal of the American Chemical Society.

[13]  H. Roehl,et al.  Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration , 2011, Development.

[14]  S. Weiner,et al.  Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. , 2011, Journal of structural biology.

[15]  Stephen L. Johnson,et al.  Fate restriction in the growing and regenerating zebrafish fin. , 2011, Developmental cell.

[16]  S. Fisher,et al.  Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. , 2011, Developmental cell.

[17]  Geert Carmeliet,et al.  Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. , 2010, Developmental cell.

[18]  S. Schulte-Merker,et al.  Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging , 2010 .

[19]  S. Weiner,et al.  Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays , 2010, Proceedings of the National Academy of Sciences.

[20]  E. Golub Role of matrix vesicles in biomineralization. , 2009, Biochimica et biophysica acta.

[21]  D. Parichy,et al.  Normal table of postembryonic zebrafish development: Staging by externally visible anatomy of the living fish , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[22]  Stephen L. Johnson,et al.  Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in zebrafish caudal fins. , 2009, Developmental biology.

[23]  M. Diem,et al.  Evaluation of intracellular polyphosphate dynamics in enhanced biological phosphorus removal process using Raman microscopy. , 2009, Environmental science & technology.

[24]  M. Grynpas,et al.  Control of Vertebrate Skeletal Mineralization by Polyphosphates , 2009, PloS one.

[25]  C. Holt,et al.  Role of calcium phosphate nanoclusters in the control of calcification , 2009, The FEBS journal.

[26]  Jeroen Bussmann,et al.  ccbe1 is required for embryonic lymphangiogenesis and venous sprouting , 2009, Nature Genetics.

[27]  H. Roehl,et al.  Tracking gene expression during zebrafish osteoblast differentiation , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[28]  S. Kranenbarg,et al.  Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton , 2008, Development.

[29]  M. McKee,et al.  Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification , 2008, Journal of Molecular Medicine.

[30]  P. Fratzl,et al.  Complementary Information on In Vitro Conversion of Amorphous (Precursor) Calcium Phosphate to Hydroxyapatite from Raman Microspectroscopy and Wide-Angle X-Ray Scattering , 2006, Calcified Tissue International.

[31]  Nicole J. Crane,et al.  Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. , 2006, Bone.

[32]  Max Diem,et al.  Raman and Infrared Microspectral Imaging of Mitotic Cells , 2006, Applied spectroscopy.

[33]  James P Freyer,et al.  Raman spectroscopy detects biochemical changes due to proliferation in mammalian cell cultures. , 2005, Biophysical journal.

[34]  H. Barr,et al.  Raman spectroscopy for identification of epithelial cancers. , 2004, Faraday discussions.

[35]  Kathryn E. Crosier,et al.  Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. , 2004, Gene expression patterns : GEP.

[36]  T. Renné,et al.  Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. , 2003, The Journal of biological chemistry.

[37]  Y. Tintut,et al.  Vascular calcification and its relation to bone calcification: Possible underlying mechanisms , 2003, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[38]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[39]  V. Frenkel,et al.  Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. , 2001, Developmental biology.

[40]  A. Moran Calcein as a marker in experimental studies newly-hatched gastropods , 2000 .

[41]  Stephen L. Johnson,et al.  nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. , 1999, Development.

[42]  R. Behringer,et al.  Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein , 1997, Nature.

[43]  L. N. Wu,et al.  Physicochemical Characterization of the Nucleational Core of Matrix Vesicles* , 1997, The Journal of Biological Chemistry.

[44]  B. Decker,et al.  Relationships between endothelial cells, pericytes, and osteoblasts during bone formation in the sheep femur following implantation of tricalciumphosphate‐ceramic , 1995, The Anatomical record.

[45]  J. Durig,et al.  Fourier transform raman spectroscopy of synthetic and biological calcium phosphates , 1994, Calcified Tissue International.

[46]  Milenko Markovic,et al.  Octacalcium phosphate. 3. Infrared and Raman vibrational spectra , 1993 .

[47]  T. Goto,et al.  Precipitation of octacalcium phosphate at 37°C and at pH 7.4: in relation to enamel formation , 1991 .

[48]  W. Landis,et al.  Organization and development of the mineral phase during early ontogenesis of the bony fin rays of the trout Oncorhynchus mykiss , 1990, The Anatomical record.

[49]  S. Popoff,et al.  Bone cell biology: the regulation of development, structure, and function in the skeleton. , 1988, The American journal of anatomy.

[50]  C. Gay,et al.  Matrix vesicles in newly synthesizing bone observed after ultracryotomy and ultramicroincineration , 1977, Calcified Tissue Research.

[51]  C. Gay,et al.  Frozen thin-sections of rapidly forming bone: Bone cell ultrastructure , 1975, Calcified Tissue Research.

[52]  H. Füredi-Milhofer,et al.  Precipitation of calcium phosphates from electrolyte solutions , 1975, Calcified Tissue Research.

[53]  A. Lehninger,et al.  CALCIUM PHOSPHATE GRANULES IN THE HEPATOPANCREAS OF THE BLUE CRAB CALLINECTES SAPIDUS , 1974, The Journal of cell biology.

[54]  L. Brečević,et al.  Precipitation of calcium phosphates from electrolyte solutions , 1970, Calcified Tissue Research.

[55]  W. R. Fleming Calcium metabolism of teleosts. , 1967, American zoologist.

[56]  W. E. Brown,et al.  Octacalcium Phosphate and Hydroxyapatite: Crystal Structure of Octacalcium Phosphate , 1962, Nature.

[57]  D. Wallach,et al.  Preparation and Properties of 3,6-Dihydroxy-2,4-bis-[N-N´-di-(carboxymethyl)-aminomethyl] fluoran , 1959 .

[58]  A. Kuyper THE CHEMISTRY OF BONE FORMATION II. SOME FACTORS WHICH AFFECT THE SOLUBILITY OF CALCIUM PHOSPHATE IN BLOOD SERUM , 1945 .

[59]  W. Jee,et al.  The bone lining cell: A distinct phenotype? , 2007, Calcified Tissue International.

[60]  P. Cheng Octacalcium phosphate formationin vitro: Implications for bone formation , 2007, Calcified Tissue International.

[61]  F. Sánchez-Jiménez,et al.  Fourier transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines. , 2001, Biophysical journal.

[62]  A. S. Posner,et al.  Properties of nucleating systems , 1978 .

[63]  W. E. Clark The tissues of the body : an introduction to the study of anatomy , 1939 .