Sensor-based, time-critical mobility of autonomous robots in cluttered spaces: a harmonic potential approach

This paper suggests an integrated navigation system for an unmanned ground vehicle operating in an unknown cluttered environment. The navigator supports time-critical mobility making it possible for a mobile robot to reach a target from the first attempt without the need for a dedicated exploration and mapping stage. The robot only uses necessary and sufficient egocentric local sensory data collected on its way to the target. The construction of the navigation structure revolves around key properties of the harmonic potential field approach to motion planning. The robot's trajectory is well-behaved and direct-to-the-goal. It contains only the minimum number of detours necessary to accommodate the sensory data and maintain the robot in a safe, goal-oriented state. The navigation structure is developed and its theoretical basis is explained. Extensive experimental validation of its properties and performance is carried-out using the X80 robotic platform.

[1]  L. Tarassenko,et al.  Analogue computation of collision-free paths , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[2]  David D. Woods,et al.  Envisioning human-robot coordination in future operations , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[3]  Alastair Channon,et al.  Artificial Life , 2010, Encyclopedia of Machine Learning.

[4]  Alain Liégeois,et al.  Path planning for non-holonomic vehicles: a potential viscous fluid field method , 2002, Robotica.

[5]  Vladimir J. Lumelsky,et al.  Incorporating range sensing in the robot navigation function , 1990, IEEE Trans. Syst. Man Cybern..

[6]  Alex M. Andrew,et al.  Artificial Intelligence and Mobile Robots , 1999 .

[7]  Georgios Ch. Sirakoulis,et al.  Memristor-Based Nanoelectronic Computing Circuits and Architectures , 2016 .

[8]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[9]  Richard M. Murray,et al.  Motion planning in observations space with learned diffeomorphism models , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  Larry Eugene Banta ADVANCED DEAD RECKONING NAVIGATION FOR MOBILE ROBOTS , 1987 .

[11]  Ahmad A. Masoud,et al.  An informationally-open, organizationally-closed control structure for navigating a robot in an unknown, stationary environment , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[12]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms , 1993 .

[13]  Robin R. Murphy,et al.  Disaster Robotics , 2014, Springer Handbook of Robotics, 2nd Ed..

[14]  Antonio Fernández-Caballero,et al.  On the identification and establishment of topological spatial relations by autonomous systems , 2014, Connect. Sci..

[15]  G. Swaminathan Robot Motion Planning , 2006 .

[16]  M Maarten Steinbuch,et al.  Motion Planning for Mobile Robots - A Guide , 2012 .

[17]  Scott Koziol,et al.  Reconfigurable Analog VLSI circuits for robot path planning , 2011, 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[18]  Bernard Girau,et al.  Embedded harmonic control for dynamic trajectory planning on FPGA , 2007, Artificial Intelligence and Applications.

[19]  Ahmad A. Masoud,et al.  Motion planning with gamma-harmonic potential fields , 2012, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[20]  Christopher I. Connolly Harmonic Functions and Collision Probabilities , 1997, Int. J. Robotics Res..

[21]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[22]  Ahmad A. Masoud A Harmonic Potential Approach for Simultaneous Planning and Control of a Generic UAV Platform , 2012, J. Intell. Robotic Syst..

[23]  Robert Rosen,et al.  Structural stability and morphogenesis , 1977 .

[24]  Ahmad A. Masoud,et al.  Kinodynamic Motion Planning: A Novel Type Of Nonlinear, Passive Damping Forces And Advantages , 2016, ArXiv.

[25]  J. Brian Burns,et al.  Path planning using Laplace's equation , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[26]  Didier Keymeulen,et al.  The fluid dynamics applied to mobile robot motion: the stream field method , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[27]  Benjamin Kuipers,et al.  Building safety maps using vision for safe local mobile robot navigation , 2009 .

[28]  MR Jones Autonomous Robots in SWAT Applications : Research , Design , and Operations Challenges , 2002 .

[29]  Christoforos N. Hadjicostis,et al.  Coding Approaches to Fault Tolerance in Combinational and Dynamic Systems , 2001, The Kluwer international series in engineering and computer science.

[30]  David Wooden,et al.  A guide to vision-based map building , 2006, IEEE Robotics & Automation Magazine.

[31]  Kurt Konolige,et al.  The Office Marathon: Robust navigation in an indoor office environment , 2010, 2010 IEEE International Conference on Robotics and Automation.

[32]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[33]  Didier Keymeulen,et al.  A Reactive Robot Navigation System Based on a Fluid Dynamics Metaphor , 1990, PPSN.

[34]  Jan Rosell,et al.  Efficient Path Planning Using Harmonic Functions Computed on a Non-regular Grid , 2002, CCIA.

[35]  Micha Sharir,et al.  A Survey of Motion Planning and Related Geometric Algorithms , 1988, Artificial Intelligence.

[36]  Scott Koziol,et al.  Robot path planning using Field Programmable Analog Arrays , 2012, 2012 IEEE International Conference on Robotics and Automation.

[37]  G. Campion,et al.  Controllability and State Feedback Stabilizability of Nonholonomic Mechanical Systems , 1991 .

[38]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[39]  Ahmad A. Masoud,et al.  Robot navigation using a pressure generated mechanical stress field: "the biharmonic potential approach" , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[40]  G. Lei A neuron model with fluid properties for solving labyrinthian puzzle , 1990, Biological Cybernetics.

[41]  Ahmad A. Masoud,et al.  Constrained motion control using vector potential fields , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[42]  Ahmad A. Masoud,et al.  Harmonic potential based communication-aware navigation and beamforming in cluttered spaces with full channel-state information , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Vladimir J. Lumelsky,et al.  Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape , 1987, Algorithmica.

[44]  Frank Dellaert,et al.  Path planning with uncertainty: Voronoi Uncertainty Fields , 2013, 2013 IEEE International Conference on Robotics and Automation.

[45]  Ahmad A. Masoud,et al.  Motion planning in the presence of directional and regional avoidance constraints using nonlinear, anisotropic, harmonic potential fields: a physical metaphor , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[46]  Ahmad A. Masoud,et al.  Evolutionary action maps for navigating a robot in an unknown, multidimensional, stationary environment. II. Implementation and results , 1997, Proceedings of International Conference on Robotics and Automation.

[47]  Beatriz L. Boada,et al.  Traversable Region Modeling for Outdoor Navigation , 2005, J. Intell. Robotic Syst..

[48]  Daniel E. Koditschek,et al.  Exact robot navigation by means of potential functions: Some topological considerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[49]  Ahmad A. Masoud,et al.  A harmonic potential field approach for joint planning and control of a rigid, separable nonholonomic, mobile robot , 2013, Robotics Auton. Syst..

[50]  Ahmad A. Masoud,et al.  A Hybrid, PDE-ODE Control Strategy for Intercepting an Intelligent, well-informed Target in a Stationary, Cluttered Environment , 2016, ArXiv.

[51]  Ahmad A. Masoud,et al.  A harmonic potential field approach for planning motion of a UAV in a cluttered environment with a drift field , 2011, IEEE Conference on Decision and Control and European Control Conference.

[52]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[53]  Vicki H. Allan,et al.  Managing Risk in Disaster Scenarios with Autonomous Robots , 2009 .

[54]  Zhaodan Kong,et al.  A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance , 2010, J. Intell. Robotic Syst..

[55]  Frank L. Lewis,et al.  Autonomy and machine intelligence in complex systems: A tutorial , 2015, 2015 American Control Conference (ACC).

[56]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[57]  Byung Kook Kim,et al.  Minimum-Energy Translational Trajectory Generation for Differential-Driven Wheeled Mobile Robots , 2007, J. Intell. Robotic Syst..

[58]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[59]  Guido Bugmann,et al.  Rapid path planning for robotic manipulators using an emulated resistive grid , 1995 .

[60]  S. Axler,et al.  Harmonic Function Theory , 1992 .

[61]  Libor Preucil,et al.  Knowledge Acquisition for Mobile Robot Environment Mapping , 1999, DEXA.

[62]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[63]  Michael Farber,et al.  TOPOLOGY OF ROBOT MOTION PLANNING , 2006 .

[64]  Sang Jo Lee,et al.  Sonar mapping of a mobile robot considering position uncertainty , 1997 .

[65]  Martial Hebert,et al.  A complete navigation system for goal acquisition in unknown environments , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[66]  Didier Keymeulen,et al.  The Stream Field Method Applied to Mobile Robot Navigation: a Topological Perspective , 1994, ECAI.

[67]  Ahmad A. Masoud,et al.  A Discrete Harmonic Potential Field for Optimum Point-to-point Routing on a Weighted Graph , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[68]  Yung-Hsiang Lu,et al.  Energy-efficient mobile robots , 2007 .

[69]  P Paraskevas Dunias,et al.  Autonomous robots using artificial potential fields , 1996 .

[70]  René Thom,et al.  Structural stability and morphogenesis , 1977, Pattern Recognit..

[71]  Chakravarthini M. Saaj,et al.  Assessment of Artificial Potential Field methods for navigation of planetary rovers , 2009, 2009 European Control Conference (ECC).

[72]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[73]  S. Bergman,et al.  Kernel Functions and Elliptic Differential Equations in Mathematical Physics , 2005 .

[74]  Ahmad A. Masoud,et al.  Kinodynamic Motion Planning , 2010, IEEE Robotics & Automation Magazine.

[75]  Ahmad A. Masoud,et al.  Motion planning in the presence of directional and obstacle avoidance constraints using nonlinear, anisotropic, harmonic potential fields , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[76]  Massimiliano Di Ventra,et al.  Solving mazes with memristors: a massively-parallel approach , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Sebastian Thrun,et al.  Lifelong robot learning , 1993, Robotics Auton. Syst..

[78]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .