Spectral Properties of High Contrast Band-Gap Materials and Operators on Graphs

The theory of classical waves in periodic high contrast photonic and acoustic media leads to the spectral problem - Δu= λ∈u, where the dielectric constant ∈(x) is a periodic function which assumes a large value ∈ near a periodic graph Σ in R^2 and is equal to 1 otherwise. Existence and locations of spectral gaps are of primary interest. The high contrast asymptotics naturally leads to pseudodifferential operators of the Dirichlet-to-Neumann type on graphs and on more general structures. Spectra of these operators are studied numerically and analytically. New spectral effects are discovered, among them the “almost discreteness” of the spectrum for a disconnected graph and the existence of “almost localized” waves in some connected purely periodic structures.

[1]  B. Dahlberg,et al.  A remark on two dimensional periodic potentials , 1982 .

[2]  S. John,et al.  Localization of Light , 1991 .

[3]  Costas M. Soukoulis,et al.  Photonic band gaps and localization , 1993 .

[4]  Michel Piché,et al.  Photonic band gaps of transverse-electric modes in two-dimensionally periodic media , 1991 .

[5]  Michelle Schatzman,et al.  On the Eigenvalues of the Laplace Operator on a Thin Set with Neumann Boundary Conditions , 1996 .

[6]  I. Gikhman Two-parameter martingales , 1982 .

[7]  Arthur R. McGurn,et al.  Photonic band structure of a truncated, two-dimensional, periodic dielectric medium , 1993 .

[8]  Alexander Figotin,et al.  Photonic pseudogaps for periodic dielectric structures , 1994 .

[9]  M. Skriganov The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential , 1985 .

[10]  M. Shubin THE SPECTRAL THEORY AND THE INDEX OF ELLIPTIC OPERATORS WITH ALMOST PERIODIC COEFFICIENTS , 1979 .

[11]  J. B. McLeod THE SPECTRAL THEORY OF PERIODIC DIFFERENTIAL EQUATIONS , 1975 .

[12]  P. M. Platzman,et al.  Microwave propagation in two-dimensional dielectric lattices. , 1991, Physical review letters.

[13]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[14]  Alexander Figotin,et al.  The Computation of Spectra of Some 2D Photonic Crystals , 1997 .

[15]  On the Bethe-Sommerfeld conjecture , 2000 .

[16]  Zhang,et al.  Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations. , 1990, Physical review letters.

[17]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[18]  John D. Joannopoulos,et al.  Existence of a photonic band gap in two dimensions , 1992 .

[19]  Exner,et al.  Periodic Schrödinger operators with large gaps and Wannier-Stark ladders. , 1994, Physical review letters.

[20]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[21]  Alexander Figotin,et al.  Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..

[22]  R. Carlson Inverse eigenvalue problems on directed graphs , 1999 .

[23]  P. Kuchment,et al.  2d photonic crystals with cubic structure: asymptotic analysis , 1998 .

[24]  A. Maradudin,et al.  Photonic band structure of two-dimensional systems: The triangular lattice. , 1991, Physical review. B, Condensed matter.

[25]  Chan,et al.  Photonic band gaps and defects in two dimensions: Studies of the transmission coefficient. , 1993, Physical review. B, Condensed matter.

[26]  Yulia E. Karpeshina,et al.  Perturbation Theory for the Schrödinger Operator with a Periodic Potential , 1997 .

[27]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[28]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..

[29]  Yulia E. Karpeshina ANALYTIC PERTURBATION THEORY FOR A PERIODIC POTENTIAL , 1990 .

[30]  Exner Lattice Kronig-Penney models. , 1995, Physical review letters.

[31]  Leung,et al.  Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media. , 1990, Physical review letters.

[32]  M. M. Skriganov,et al.  Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , 1987 .

[33]  R. Carlson Hill's equation for a homogeneous tree , 1997 .

[34]  F. M. Saxelby Experimental Mathematics , 1902, Nature.

[35]  Michel Piché,et al.  Photonic bandgaps in periodic dielectric structures , 1993 .

[36]  J. Sylvester,et al.  Inverse boundary value problems at the boundary—continuous dependence , 1988 .

[37]  J. Rubinstein,et al.  Asymptotics for thin superconducting rings , 1998 .

[38]  Adjoint and Self-adjoint Differential Operators on Graphs , 1998 .

[39]  Igor Ponomarev,et al.  Separation of Variables in the Computation of Spectra in 2-D Photonic Crystals , 2001, SIAM J. Appl. Math..

[40]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[41]  I. M. Glazman Direct methods of qualitative spectral analysis of singular differential operators , 1965 .