Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries

[1]  Zhihua Cui,et al.  A second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys , 2012 .

[2]  B. Lucht,et al.  Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries , 2012, 1205.5335.

[3]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[4]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[5]  G. Yushin,et al.  Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films , 2011 .

[6]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[7]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .

[8]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[9]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[10]  John G. Ekerdt,et al.  Structure and Properties of Li―Si Alloys: A First-Principles Study , 2011 .

[11]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[12]  Yang-Tse Cheng,et al.  Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications , 2010 .

[13]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[14]  Vincent Chevrier,et al.  First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .

[15]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[16]  J. Dahn,et al.  First principles studies of silicon as a negative electrode material for lithium-ion batteries , 2009 .

[17]  Hung-Chun Wu,et al.  Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells , 2009 .

[18]  V. Prakapenka,et al.  The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source , 2008 .

[19]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[20]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[21]  J. Dahn,et al.  Phase Changes in Electrochemically Lithiated Silicon at Elevated Temperature , 2006 .

[22]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[23]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[24]  Robert Hull,et al.  Properties of Crystalline Silicon , 1999 .

[25]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[26]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[27]  William W. Porterfield,et al.  Inorganic chemistry : a unified approach , 1984 .

[28]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[29]  J. W. Shaner,et al.  Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar , 1978 .

[30]  J. Kendall Inorganic Chemistry , 1944, Nature.