Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties.

New cyclic quaternary ammonium salts, composed of N-alkyl(alkyl ether)-N-methylpyrrolidinium, -oxazolidinium, -piperidinium, or -morpholinium cations (alkyl = nC4H9, alkyl ether = CH3OCH2, CH3OCH2CH2) and a perfluoroalkyltrifluoroborate anion ([R(F)BF3]-, R(F) = CF3, C2F5, nC3F7, nC4F9), were synthesized and characterized. Most of these salts are liquids at room temperature. The key properties of these salts--phase transitions, thermal stability, density, viscosity, conductivity, and electrochemical windows--were measured and compared to those of their corresponding [BF4]- and [(CF3SO2)2N]- salts. The structural effect on all the above properties was intensively studied in terms of the identity of the cation and anion, variation of the side chain in the cation (i.e., alkyl versus alkyl ether), and change in the length of the perfluoroalkyl group (R(F)) in the [R(F)BF3]- ion. The reduction of Li+ ions and reoxidation of Li metal took place in pure N-butyl-N-methylpyrrolidinium pentafluoroethyltrifluoroborate as the supporting electrolyte. Such comprehensive studies enhance the knowledge necessary to design and optimize ionic liquids for many applications, including electrolytes. Some of these new salts show desirable properties, including low melting points, high thermal stabilities, low viscosities, high conductivities, and wide electrochemical windows, and may thus be potential candidates for use as electrolytes in high-energy storage devices. In addition, many salts are ionic plastic crystals.

[1]  Roger A. Sheldon,et al.  Biocatalysis in ionic liquids. , 2002, Chemical reviews.

[2]  Hajime Matsumoto,et al.  Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte , 2005 .

[3]  A. Bhatt,et al.  Structural characterization of a lanthanum bistriflimide complex, La(N(SO2CF3)2)3(H2O)3, and an investigation of La, Sm, and Eu electrochemistry in a room-temperature ionic liquid, [Me3N(n)Bu][N(SO2CF3)2]. , 2005, Inorganic chemistry.

[4]  Hiroyuki Ohno,et al.  Electrochemical Aspects of Ionic Liquids: Ohno/Electrochemical Aspects of Ionic Liquids , 2005 .

[5]  Ki Chul Park,et al.  High Energy-Density Capacitor Based on Ammonium Salt Type Ionic Liquids and Their Mixing Effect by Propylene Carbonate , 2005 .

[6]  Robin D. Rogers,et al.  Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities: Transformations and Processes , 2005 .

[7]  M. Ue,et al.  Li [ C 2 F 5 BF 3 ] as an Electrolyte Salt for 4 V Class Lithium-Ion Cells , 2005 .

[8]  H. Matsumoto,et al.  Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. , 2005, Chemistry.

[9]  大野 弘幸,et al.  Electrochemical aspects of ionic liquids , 2005 .

[10]  H. Matsumoto,et al.  Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. , 2004, Chemistry.

[11]  H. Matsumoto,et al.  Low-melting, Low-viscous, Hydrophobic Ionic Liquids: N-Alkyl(alkyl ether)-N-methylpyrrolidinium Perfluoroethyltrifluoroborate , 2004 .

[12]  K. Takagi,et al.  Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells , 2004 .

[13]  Michel Armand,et al.  Room temperature molten salts as lithium battery electrolyte , 2004 .

[14]  Bernd M. Smarsly,et al.  Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen , 2004 .

[15]  M. Antonietti,et al.  Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. , 2004, Angewandte Chemie.

[16]  J. Shreeve,et al.  The first Cu(I)-mediated nucleophilic trifluoromethylation reactions using (trifluoromethyl)trimethylsilane in ionic liquids. , 2004, Organic & biomolecular chemistry.

[17]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[18]  Paul S. Wheatley,et al.  Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues , 2004, Nature.

[19]  J. Pernak,et al.  Ionic liquids with symmetrical dialkoxymethyl-substituted imidazolium cations. , 2004, Chemistry.

[20]  H. Matsumoto,et al.  A New Class of Hydrophobic Ionic Liquids: Trialkyl(2-methoxyethyl)ammonium Perfluoroethyltrifluoroborate , 2004 .

[21]  C. Poole Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. , 2004, Journal of chromatography. A.

[22]  H. Matsumoto,et al.  Low-Viscous, Low-Melting, Hydrophobic Ionic Liquids: 1-Alkyl-3-methylimidazolium Trifluoromethyltrifluoroborate , 2004 .

[23]  R. Singh,et al.  Low melting inorganic salts of alkyl-, fluoroalkyl-, alkyl ether-, and fluoroalkyl ether-substituted oxazolidine and morpholine. , 2004, Inorganic chemistry.

[24]  Huen Lee,et al.  Ionic liquids based on N-alkyl-N-methylmorpholinium salts as potential electrolytes. , 2004, Chemical communications.

[25]  M. Ue,et al.  New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions , 2004 .

[26]  Anthony F. Hollenkamp,et al.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid , 2004 .

[27]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[28]  Wu Xu,et al.  Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of DeltapKa from aqueous solutions. , 2003, Journal of the American Chemical Society.

[29]  M. Armand,et al.  Conductive Organic Plastic Crystals Based on Pyrazolium Imides , 2003 .

[30]  Li-Min Wang,et al.  Ionic Liquids of Chelated Orthoborates as Model Ionic Glassformers , 2003 .

[31]  M. Ue,et al.  Novel electrolyte salts based on perfluoroalkyltrifluoroborate anions: 1. Synthesis and characterization , 2003 .

[32]  Robin D. Rogers,et al.  Ionic liquids as green solvents : progress and prospects , 2003 .

[33]  Jairton Dupont,et al.  Room temperature dialkylimidazolium ionic liquid-based fuel cells , 2003 .

[34]  R. Kazlauskas,et al.  Biocatalysis in ionic liquids - advantages beyond green technology. , 2003, Current opinion in biotechnology.

[35]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[36]  G. Molander,et al.  Improved Synthesis of Potassium (Trifluoromethyl)trifluoroborate [K(CF3BF3)] , 2003 .

[37]  Y. Aihara,et al.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt , 2003 .

[38]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[39]  K. Kudo,et al.  Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes , 2003 .

[40]  Makoto Ue,et al.  Application of Low-Viscosity Ionic Liquid to the Electrolyte of Double-Layer Capacitors , 2003 .

[41]  A. Bhatt,et al.  Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes , 2002 .

[42]  U. Kragl,et al.  Enzyme catalysis in ionic liquids. , 2002, Current opinion in biotechnology.

[43]  R. Haag,et al.  Moderne Trennverfahren zur effizienten Aufarbeitung in der organischen Synthese , 2002 .

[44]  R. Haag,et al.  Modern separation techniques for the efficient workup in organic synthesis. , 2002, Angewandte Chemie.

[45]  P. Suarez,et al.  Ionic liquid (molten salt) phase organometallic catalysis. , 2002, Chemical reviews.

[46]  D. Macfarlane,et al.  Structural Characterization of Novel Ionic Materials Incorporating the Bis(trifluoromethanesulfonyl)amide Anion , 2002 .

[47]  G. Blomgren,et al.  Ionic Liquids for Lithium Ion and Related Batteries , 2002 .

[48]  Peter Wasserscheid,et al.  Ionic Liquids in Synthesis , 2002 .

[49]  Maria Forsyth,et al.  Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics , 2001 .

[50]  D. Macfarlane,et al.  N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts : ionic solvents and solid electrolytes , 2001 .

[51]  Maria Forsyth,et al.  N-Methyl-N-alkylpyrrolidinium Hexafluorophosphate Salts: Novel Molten Salts and Plastic Crystal Phases , 2001 .

[52]  Robin D. Rogers,et al.  Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation , 2001 .

[53]  Peter Wasserscheid,et al.  Ionische Flüssigkeiten - neue 'Lösungen' für die Übergangsmetallkatalyse , 2000 .

[54]  P. Wasserscheid,et al.  Ionic Liquids-New "Solutions" for Transition Metal Catalysis. , 2000, Angewandte Chemie.

[55]  H. Matsumoto,et al.  Highly Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide , 2000 .

[56]  R. J. Brown,et al.  Melting Point and Molecular Symmetry , 2000 .

[57]  Maria Forsyth,et al.  High conductivity molten salts based on the imide ion , 2000 .

[58]  Maria Forsyth,et al.  Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries , 1999, Nature.

[59]  D. Macfarlane,et al.  Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases , 1999 .

[60]  D. Macfarlane,et al.  Room-temperature molten salts based on the quaternary ammonium ion , 1998 .

[61]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[62]  G. Papageorgiou,et al.  The functionalisation of electron rich aromatic compounds with 1,3-oxazolidines and 1,3-dimethylimidazolidine , 1997 .

[63]  D. Macfarlane,et al.  Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion , 1997 .

[64]  J. Dearden,et al.  The QSAR prediction of melting point, a property of environmental relevance. , 1991, The Science of the total environment.

[65]  C. Angell,et al.  Ambient temperature plastic crystal fast ion conductors (PLICFICS) , 1986 .

[66]  G. Gritzner,et al.  Recommendations on reporting electrode potentials in nonaqueous solvents (Recommendations 1983) , 1984 .

[67]  C. Angell,et al.  Versatile organic iodide melts and glasses with high mole fractions of LiI: Glass transition temperatures and electrical conductivities , 1983 .

[68]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .