Microwave assisted antibacterial chitosan-silver nanocomposite films.

[1]  Michael K. C. Tam,et al.  ACS Sustainable Chemistry & Engineering’s Impact Factor Rises , 2016 .

[2]  E. Sadiku,et al.  Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process , 2016 .

[3]  T. Jayaramudu,et al.  Nano zinc oxide–sodium alginate antibacterial cellulose fibres , 2015, Carbohydrate Polymers.

[4]  Shiv Shankar,et al.  Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. , 2015, Carbohydrate polymers.

[5]  Dowan Kim,et al.  Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly(vinyl alcohol) hybrid films for packaging applications , 2015 .

[6]  L. Jahani,et al.  The Antimicrobial Effect of Lactoferrin on Gram-Negative and Gram-Positive Bacteria , 2015 .

[7]  I. Sanchez,et al.  Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions , 2015 .

[8]  R. Nisticò,et al.  Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity , 2015 .

[9]  T. Jayaramudu,et al.  Antibacterial nanocomposite hydrogels for superior biomedical applications: a Facile eco-friendly approach , 2015 .

[10]  I. S. Turan,et al.  RSC Advances , 2015 .

[11]  G. Kavoosi,et al.  Chemical and Biological Properties of Trachyspermum ammi Encapsulated in Gelatin Nanofilms , 2014 .

[12]  Genevieve A. Kahrilas,et al.  Investigation of Antibacterial Activity by Silver Nanoparticles Prepared by Microwave-Assisted Green Syntheses with Soluble Starch, Dextrose, and Arabinose , 2014 .

[13]  T. Jayaramudu,et al.  Microbial resistant nanocurcumin-gelatin-cellulose fibers for advanced medical applications , 2014 .

[14]  Naeem Ali,et al.  Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria , 2013, International journal of nanomedicine.

[15]  K. Ramam,et al.  Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. , 2013, Carbohydrate polymers.

[16]  P. Guerrero,et al.  Characterization and antimicrobial analysis of chitosan-based films , 2013 .

[17]  Rajender S. Varma,et al.  Greener Techniques for the Synthesis of Silver Nanoparticles Using Plant Extracts, Enzymes, Bacteria, Biodegradable Polymers, and Microwaves , 2013 .

[18]  Rotimi Sadiku,et al.  Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. , 2013, Carbohydrate polymers.

[19]  R. Gavara,et al.  Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. , 2013, Journal of agricultural and food chemistry.

[20]  S. Ray,et al.  Cellulose–polymer–Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds , 2012, Carbohydrate Polymers.

[21]  D. Chiappetta,et al.  Colloids and Surfaces B: Biointerfaces , 2013 .

[22]  F. Debeaufort,et al.  Structure and thermal properties of a chitosan coated polyethylene bilayer film , 2012 .

[23]  A. Ingle,et al.  Silver nanoparticles: the powerful nanoweapon against multidrug‐resistant bacteria , 2012, Journal of applied microbiology.

[24]  M. Darroudi,et al.  Green synthesis of colloidal silver nanoparticles by sonochemical method , 2012 .

[25]  H. H. Lara,et al.  Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds , 2011, Journal of nanobiotechnology.

[26]  I. S. Sumithra,et al.  Microwave assisted synthesis and UV–Vis spectroscopic studies of silver nanoparticles synthesized using vanillin as a reducing agent , 2011 .

[27]  K. A. El-Nour,et al.  Synthesis and applications of silver nanoparticles , 2010 .

[28]  Byeongdu Lee,et al.  Erratum: Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell (The Journal of Physical Chemistry B) , 2010 .

[29]  B. Sreedhar,et al.  Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. , 2010, Colloids and surfaces. B, Biointerfaces.

[30]  F. Deflorian,et al.  Progress in Organic Coatings , 2009 .

[31]  Jessica D. Schiffman,et al.  Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. , 2008, Biomacromolecules.

[32]  Y. Wang,et al.  Properties of hydrophilic chitosan network membranes by introducing binary crosslink agents , 2008 .

[33]  J. Seiber International dimensions of the Journal of Agricultural and Food Chemistry. , 2008, Journal of Agricultural and Food Chemistry.

[34]  Seok-In Hong,et al.  Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. , 2006, Journal of agricultural and food chemistry.

[35]  Sahar Al-Malaika,et al.  Polymer degradation and stability , 2005 .

[36]  A. Imshenetsky,et al.  Journal of applied biochemistry and microbiology is 40 years old , 2005, Applied Biochemistry and Microbiology.

[37]  Mauro Epifani,et al.  Sol–Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO2, TiO2, and ZrO2 Thin Films , 2004 .

[38]  Bingsheng Yin,et al.  Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly(N-vinylpyrrolidone) , 2003 .

[39]  Richard K. Brow,et al.  Journal of the American Ceramic Society: Introduction , 2002 .

[40]  L. Kotra,et al.  High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane: Structural Basis for Permeability , 2000 .

[41]  J. C. Bevington European polymer journal: A brief history , 1988 .