Direct policy search for robust multi-objective management of deeply uncertain socio-ecological tipping points

Abstract Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep uncertainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake problem in which a hypothetical town situated on a lake must develop pollution control strategies to maximize its economic benefits while minimizing the probability of the lake crossing a critical phosphorus (P) threshold, above which it irreversibly transitions into a eutrophic state. Here, we explore the use of direct policy search (DPS) to design robust pollution control rules for the town that account for deeply uncertain system characteristics and conflicting objectives. The closed loop control formulation of DPS improves the quality and robustness of key management tradeoffs, while dramatically reducing the computational complexity of solving the multi-objective pollution control problem relative to open loop control strategies. These insights suggest DPS is a promising tool for managing socio-ecological systems with deeply uncertain tipping points.

[1]  Wouter T. De Groot,et al.  More than total economic value: How to combine economic valuation of biodiversity with ecological resilience , 2013 .

[2]  Patrick M. Reed,et al.  An open source framework for many-objective robust decision making , 2015, Environ. Model. Softw..

[3]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[4]  Casey Brown,et al.  Decision scaling: Linking bottom‐up vulnerability analysis with climate projections in the water sector , 2012 .

[5]  P. Reed,et al.  Beyond optimality: Multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty , 2014 .

[6]  Nicholas I. Fisher,et al.  Bump hunting in high-dimensional data , 1999, Stat. Comput..

[7]  Jim W. Hall,et al.  Information gap analysis of flood model uncertainties and regional frequency analysis , 2010 .

[8]  Joseph Robert Kasprzyk Many Objective Water Resources Planning and Management Given Deep Uncertainties, Population Pressures, and Environmental Change , 2013 .

[9]  Steve Bankes,et al.  Exploratory Modeling for Policy Analysis , 1993, Oper. Res..

[10]  Robert J. Lempert,et al.  Confronting Surprise , 2002 .

[11]  Martin Kenneth Starr Product design and decision theory , 1963 .

[12]  Patrick M. Reed,et al.  Many-objective robust decision making for managing an ecosystem with a deeply uncertain threshold response , 2015 .

[13]  Warren E. Walker,et al.  Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world , 2013 .

[14]  Patrick M. Reed,et al.  Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework , 2013, Evolutionary Computation.

[15]  David McInerney,et al.  The dynamics of learning about a climate threshold , 2008 .

[16]  George Kuczera,et al.  Optimizing water supply headworks operating rules under stochastic inputs: Assessment of genetic algorithm performance , 2005 .

[17]  Robert J. Lempert,et al.  Adapting to Climate Change: Climate prediction: a limit to adaptation? , 2009 .

[18]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[19]  Marten Scheffer,et al.  Allowing variance may enlarge the safe operating space for exploited ecosystems , 2015, Proceedings of the National Academy of Sciences.

[20]  Klaus Keller,et al.  Robust Climate Policies Under Uncertainty: A Comparison of Robust Decision Making and Info‐Gap Methods , 2012, Risk analysis : an official publication of the Society for Risk Analysis.

[21]  Jacqueline de Chazal,et al.  Climate change 2007 : impacts, adaptation and vulnerability : Working Group II contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change , 2014 .

[22]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[23]  M. Scheffer,et al.  Alternative equilibria in shallow lakes. , 1993, Trends in ecology & evolution.

[24]  Casey Brown,et al.  Modeling stakeholder‐defined climate risk on the Upper Great Lakes , 2012 .

[25]  Joseph R. Kasprzyk,et al.  Many objective robust decision making for complex environmental systems undergoing change , 2012, Environ. Model. Softw..

[26]  D. H. Marks,et al.  A review and evaluation of multiobjective programing techniques , 1975 .

[27]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[28]  John M. Anderies,et al.  Corrigendum: The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries (2013 Environ. Res. Lett. 8 044048) , 2015 .

[29]  Joseph R. Kasprzyk,et al.  Evolutionary multiobjective optimization in water resources: The past, present, and future , 2012 .

[30]  Andrea Castelletti,et al.  Curses, Tradeoffs, and Scalable Management: Advancing Evolutionary Multiobjective Direct Policy Search to Improve Water Reservoir Operations , 2016 .

[31]  Andrea Castelletti,et al.  A diagnostic assessment of evolutionary algorithms for multi-objective surface water reservoir control , 2016 .

[32]  Giorgio Guariso,et al.  The Management of Lake Como: A Multiobjective Analysis , 1986 .

[33]  Stephen R. Carpenter,et al.  Management of eutrophication for lakes subject to potentially irreversible change , 1999 .

[34]  Marianne E. Krasny,et al.  Civic ecology practices: insights from practice theory , 2015 .

[35]  D. Goldberg,et al.  Domino convergence, drift, and the temporal-salience structure of problems , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[36]  Demetris Koutsoyiannis,et al.  Evaluation of the parameterization‐simulation‐optimization approach for the control of reservoir systems , 2003 .

[37]  Will Steffen,et al.  The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries , 2013 .

[38]  Patrick M. Reed,et al.  Confronting tipping points: Can multi-objective evolutionary algorithms discover pollution control tradeoffs given environmental thresholds? , 2015, Environ. Model. Softw..

[39]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[40]  S. Solomon,et al.  Irreversible climate change due to carbon dioxide emissions , 2009, Proceedings of the National Academy of Sciences.

[41]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[42]  David G. Groves,et al.  A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios , 2006, Manag. Sci..

[43]  Andrew G. Barto,et al.  Robot Weightlifting By Direct Policy Search , 2001, IJCAI.

[44]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[45]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[46]  Warren E. Walker,et al.  Coping with the Wickedness of Public Policy Problems: Approaches for Decision Making under Deep Uncertainty , 2016 .

[47]  Bing Han,et al.  Improving scenario discovery using orthogonal rotations , 2013, Environ. Model. Softw..

[48]  Jonathan D. Herman,et al.  How should robustness be defined for water systems planning under change , 2015 .

[49]  R. Bellman,et al.  On the “bang-bang” control problem , 1956 .

[50]  William D. Nordhaus,et al.  The Climate Casino , 2013 .

[51]  Benjamin P. Bryant,et al.  Thinking Inside the Box: A Participatory, Computer-Assisted Approach to Scenario Discovery , 2010 .

[52]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[53]  Gary W. Yohe,et al.  Managing the risks of climate thresholds: uncertainties and information needs , 2008 .

[54]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[55]  Bart De Schutter,et al.  Cross-Entropy Optimization of Control Policies With Adaptive Basis Functions , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[56]  R. Lempert,et al.  Identifying and evaluating robust adaptive policy responses to climate change for water management agencies in the American west , 2010 .

[57]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[58]  Jan H. Kwakkel,et al.  Thresholds, tipping and turning points for sustainability under climate change , 2013 .

[59]  Myles T. Collins,et al.  Managing the Risk of Uncertain Threshold Responses: Comparison of Robust, Optimum, and Precautionary Approaches , 2007, Risk analysis : an official publication of the Society for Risk Analysis.

[60]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[61]  Timothy M. Lenton,et al.  Environmental Tipping Points , 2013 .

[62]  Warren E. Walker,et al.  Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .

[63]  Avi Ostfeld,et al.  State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management , 2010 .