Model Predictive Control for operator-in-the-loop overhead cranes

In this paper, a Model Predictive Control approach for the velocity control of operator-in-the loop overhead cranes is proposed. The operator can select the maximum position overshoot as a tuning parameter for the method. Simulations provide a comparison between the proposed method and the well known Zero Vibration input shaping technique, showing its effectiveness in controlling the payload oscillations.

[1]  Harald Aschemann,et al.  Fast Nonlinear MPC for an Overhead Travelling Crane , 2011 .

[2]  He Chen,et al.  A Swing Constraint Guaranteed MPC Algorithm for Underactuated Overhead Cranes , 2016, IEEE/ASME Transactions on Mechatronics.

[3]  Manuel Berenguel,et al.  Fast MPC with staircase parametrization of the inputs: Continuous input blocking , 2017, 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).

[4]  William Singhose,et al.  A study of crane operator performance comparing PD-control and input shaping , 2011, Proceedings of the 2011 American Control Conference.

[5]  Xiaohua Xia,et al.  Model predictive control for improving operational efficiency of overhead cranes , 2015 .

[6]  Mohammad Ahmad Edham Optimal Dynamic Inversion Based Control Of An Overhead Crane , 2009 .

[7]  Andrey V. Savkin,et al.  A new tracking control approach for 3D overhead crane systems using model predictive control , 2014, 2014 European Control Conference (ECC).

[8]  J. Ackermann Parameter space design of robust control systems , 1980 .

[9]  Aurelio Piazzi,et al.  Minimum-time system-inversion-based motion planning for residual vibration reduction , 2000 .

[10]  Warren P. Seering,et al.  Shaping inputs to reduce vibration: a vector diagram approach , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[11]  Jaroslaw Smoczek,et al.  Comparision of model predictive, input shaping and feedback control for a lab-scaled overhead crane , 2016, 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR).

[12]  William Singhose,et al.  Effects of hoisting on the input shaping control of gantry cranes , 2000 .

[13]  Liuping Wang,et al.  Model Predictive Control System Design and Implementation Using MATLAB , 2009 .

[14]  Antonio Visioli,et al.  Simplified input-output inversion control of a double pendulum overhead crane for residual oscillations reduction , 2018, Mechatronics.

[15]  Jan Swevers,et al.  Experimental validation of nonlinear MPC on an overhead crane using automatic code generation , 2012, 2012 American Control Conference (ACC).

[16]  J. A. Rossiter,et al.  Model-Based Predictive Control : A Practical Approach , 2017 .

[17]  A. Marttinen,et al.  Adaptive Pole Placement Control of a Pilot Crane , 1990 .

[18]  Sırrı Sunay Gürleyük,et al.  Improved three-step input shaping control of crane system , 2008 .

[19]  Janusz Szpytko,et al.  Soft-constrained predictive control for an overhead crane , 2017 .

[20]  Antonio Visioli,et al.  A dynamic inversion approach for oscillation-free control of overhead cranes , 2015, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).

[21]  Ali H. Nayfeh,et al.  Dynamics and Control of Cranes: A Review , 2003 .

[22]  J. M. Virkkunen,et al.  Computer control of a loading bridge , 1988 .

[23]  Seiji Yasunobu,et al.  Automatic train operation system based on predictive fuzzy control , 1988, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications.

[24]  Ahmed Z. Al-Garni,et al.  Optimal control of overhead cranes , 1995 .

[25]  Knut Graichen,et al.  Model predictive control of an overhead crane using constraint substitution , 2013, 2013 American Control Conference.

[26]  Arto Marttinen Pole-Placement Control of a Pilot Gantry , 1989, 1989 American Control Conference.

[27]  Jan Swevers,et al.  Experimental validation of time optimal MPC on a flexible motion system , 2011, Proceedings of the 2011 American Control Conference.

[28]  Andreas Kugi,et al.  Suboptimal model predictive control of a laboratory crane , 2010 .

[29]  William Singhose,et al.  Performance studies of human operators driving double-pendulum bridge cranes , 2010 .

[30]  Michael H. Kenison,et al.  Input Shaping Control of Double-Pendulum Bridge Crane Oscillations , 2008 .

[31]  Ning Sun,et al.  Minimum-Time Trajectory Planning for Underactuated Overhead Crane Systems With State and Control Constraints , 2014, IEEE Transactions on Industrial Electronics.

[32]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[33]  Rush D. Robinett,et al.  Command shaping control of an operator-in-the-loop boom crane , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[34]  Zhou Wu,et al.  Energy Efficiency of Overhead Cranes , 2014 .

[35]  H. Troger,et al.  Time optimal control of overhead cranes with hoisting of the load , 1987, Autom..

[36]  Ho-Hoon Lee,et al.  A New Anti-Swing Control of Overhead Cranes , 1997 .

[37]  Jaroslaw Smoczek,et al.  Selected measurement and control techniques : experimental verification on a lab-scaled overhead crane , 2017 .

[38]  Jianqiang Yi,et al.  Hierarchical Sliding Mode Control for Under-actuated Cranes , 2015 .

[39]  Warren E. Dixon,et al.  Nonlinear coupling control laws for an underactuated overhead crane system , 2003 .

[40]  Ali H. Nayfeh,et al.  Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction Compensation , 2005 .

[41]  Auwalu M. Abdullahi,et al.  Control strategies for crane systems: A comprehensive review , 2017 .

[42]  Ozren Bego,et al.  Model predictive control of gantry/bridge crane with anti-sway algorithm , 2015, Journal of Mechanical Science and Technology.

[43]  Pawel Hyla,et al.  The crane control systems: A survey , 2012, 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR).