Incompressible Type Limit Analysis of a Hydrodynamic Model for Charge-Carrier Transport

This paper is concerned with the rigorous analysis of the zero electron mass limit of the full Navier--Stokes--Poisson. This system has been introduced in the literature by Anile and Pennisi (see [Phys. Rev. B, 46 (1992), pp. 13186--13193]) in order to describe a hydrodynamic model for charge-carrier transport in semiconductor devices. The purpose of this paper is to prove rigorously zero electron mass limit in the framework of general ill-prepared initial data. In this situation the velocity field and the electronic fields develop fast oscillations in time. The main idea we will use in this paper is a combination of formal asymptotic expansion and rigorous uniform estimates on the error terms. Finally we prove the strong convergence of the full Navier--Stokes--Poisson system toward the incompressible Navier--Stokes equations.

[1]  N. Masmoudi FROM VLASOV-POISSON SYSTEM TO THE INCOMPRESSIBLE EULER SYSTEM , 2001 .

[2]  T. Alazard,et al.  Low Mach Number Limit of the Full Navier-Stokes Equations , 2005, math/0501386.

[3]  S. Schochet THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS , 2005 .

[4]  Ansgar Jüngel,et al.  Zero-relaxation-time limits in the hydrodynamic equations for plasmas revisited , 2000 .

[5]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[6]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[7]  The quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data , 2009, 0905.2872.

[8]  D. Donatelli,et al.  Analysis of Oscillations and Defect Measures for the Quasineutral Limit in Plasma Physics , 2011, 1112.2556.

[9]  I. Gasser,et al.  A Vanishing Debye Length Limit in a Hydrodynamic Model for Semiconductors , 2001 .

[10]  Kumbakonam R. Rajagopal,et al.  Partial Differential Equations and Fluid Mechanics: Mathematical results concerning unsteady flows of chemically reacting incompressible fluids , 2009 .

[11]  S. Ukai The incompressible limit and the initial layer of the compressible Euler equation , 1986 .

[12]  Li Chen,et al.  The zero-electron-mass limit in the hydrodynamic model for plasmas , 2010 .

[13]  T. Alazard A minicourse on the low Mach number limit , 2008 .

[14]  Anile,et al.  Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors. , 1992, Physical review. B, Condensed matter.

[15]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[16]  S. Schochet The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit , 1986 .

[17]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[18]  Li Chen,et al.  The zero-electron-mass limit in the Euler–Poisson system for both well- and ill-prepared initial data , 2011 .

[19]  Li Chen,et al.  Vanishing electron mass limit in the bipolar Euler–Poisson system☆ , 2011 .

[20]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[21]  Hiroshi Isozaki,et al.  Wave operators and the incompressible limit of the compressible Euler equation , 1987 .

[22]  Ansgar Jüngel,et al.  Zero-mass-electrons limits in hydrodynamic models for plasmas , 1999 .

[23]  Hiroshi Isozaki,et al.  Singular limits for the compressible Euler equation in an exterior domain , 1986 .

[24]  Lorenzo Brandolese,et al.  Large time decay and growth for solutions of a viscous Boussinesq system , 2010, 1003.4921.

[25]  R. Danchin,et al.  Les theoremes de Leray et de Fujita-Kato pour le systeme de Boussinesq partiellement visqueux. The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity , 2008, 0806.4083.

[26]  D. Donatelli,et al.  A quasineutral type limit for the Navier–Stokes–Poisson system with large data , 2008 .

[27]  K. R. Rajagopal,et al.  Mathematical Analysis of Unsteady Flows of Fluids with Pressure, Shear-Rate, and Temperature Dependent Material Moduli that Slip at Solid Boundaries , 2009, SIAM J. Math. Anal..

[28]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[29]  H. Isozaki Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow , 1989 .

[30]  Ingenuin Gasser,et al.  The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors , 2001 .