Mechanisms of gene regulation in Plasmodium.

Summary. Recent investigations into gene expression in malarial systems suggest that locus-specific, promoter-based transcriptional control is not the dominant mode of regulation in Plasmodium . Although global transcript and protein profiles across the life cycle of Plasmodium imply significant control of developmental progression, 1,2 the exact mechanisms underlying this pattern are largely unknown, and appear to be unconventional compared with those of most model organisms. As such, our understanding of transcriptional, post-transcriptional, and epigenetic mechanisms in Plasmodium , as well as their relative contributions to gene regulation, lags far behind that of other eukaryotic systems. We seek a comprehensive characterization of the mechanisms that Plasmodium species have evolved to control gene expression during their complex life cycles. Both the integration in a and types Preliminary further delineation of the genomic structure, as well as elucidation of chromatin structure and epigenetic features; a systematic comparison of global expression data from nuclear run-on, RNA expression microarrays, and proteomic based assays; and the re-evaluation and functional testing of putative regulatory nucleic acid motifs, including characterization of their binding proteins. Detailed examina-tion of regulation on a whole-genome scale, as well as among specific loci, will ultimately make way for control measures aimed at interfering with processes crucial for parasite sur-vival, such as differentiation, antigenic variation, and development of

[1]  L. Aravind,et al.  Comparative analysis of apicomplexa and genomic diversity in eukaryotes. , 2004, Genome research.

[2]  Yingyao Zhou,et al.  Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. , 2004, Genome research.

[3]  M. Joshi,et al.  Molecular cloning and nuclear localization of a histone deacetylase homologue in Plasmodium falciparum. , 1999, Molecular and biochemical parasitology.

[4]  A. Olivieri,et al.  Biochemical characterization of the two nucleosome assembly proteins from Plasmodium falciparum. , 2005, Molecular and biochemical parasitology.

[5]  M. Porter Positive and negative effects of deletions and mutations within the 5' flanking sequences of Plasmodium falciparum DNA polymerase delta. , 2002, Molecular and biochemical parasitology.

[6]  Jonathan Schug,et al.  Drug‐induced alterations in gene expression of the asexual blood forms of Plasmodium falciparum , 2003, Molecular microbiology.

[7]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[8]  T. J. Templeton,et al.  Variant antigen gene expression in malaria , 2006, Cellular microbiology.

[9]  Yingyao Zhou,et al.  The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. , 2005, Molecular and biochemical parasitology.

[10]  C. Ouzounis,et al.  Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. , 2004, Genome research.

[11]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[12]  Alisson M. Gontijo,et al.  Telomeric Heterochromatin Propagation and Histone Acetylation Control Mutually Exclusive Expression of Antigenic Variation Genes in Malaria Parasites , 2005, Cell.

[13]  M. Fraser,et al.  High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  F. Pineda,et al.  Molecular complexity of sexual development and gene regulation in Plasmodium falciparum. , 2004, International journal for parasitology.

[15]  William Stafford Noble,et al.  Assessing computational tools for the discovery of transcription factor binding sites , 2005, Nature Biotechnology.

[16]  Koen J. Dechering,et al.  Isolation and Functional Characterization of Two Distinct Sexual-Stage-Specific Promoters of the Human Malaria Parasite Plasmodium falciparum , 1999, Molecular and Cellular Biology.

[17]  L. Fulton,et al.  Finding Functional Features in Saccharomyces Genomes by Phylogenetic Footprinting , 2003, Science.

[18]  T. Wellems,et al.  Malaria: Cooperative silencing elements in var genes , 2001, Nature.

[19]  M Lanzer,et al.  Mutational analysis identifies a five base pair cis-acting sequence essential for GBP130 promoter activity in Plasmodium falciparum. , 1999, Molecular and biochemical parasitology.

[20]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[21]  K. Deitsch Gene Silencing and Antigenic Variation in Malaria Parasites , 2001, TheScientificWorldJournal.

[22]  Thanat Chookajorn,et al.  Epigenetic memory at malaria virulence genes , 2007, Proceedings of the National Academy of Sciences.

[23]  R. Coppel,et al.  Identification of Plasmodium falciparum histone 2B and histone 3 genes. , 1995, Molecular and biochemical parasitology.

[24]  A. Olivieri,et al.  Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage‐specific expression , 2006, Molecular microbiology.

[25]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[26]  P. Rathod,et al.  Identification of a Plasmodium falciparum histone 2A gene. , 1992, Molecular and biochemical parasitology.

[27]  John R Yates,et al.  A Comprehensive Survey of the Plasmodium Life Cycle by Genomic, Transcriptomic, and Proteomic Analyses , 2005, Science.

[28]  N. Friedman,et al.  Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae , 2005, PLoS biology.

[29]  J. Golenser,et al.  Plasmodium falciparum: evidence for a DNA methylation pattern. , 1991, Experimental parasitology.

[30]  Manoj T. Duraisingh,et al.  Heterochromatin Silencing and Locus Repositioning Linked to Regulation of Virulence Genes in Plasmodium falciparum , 2005, Cell.

[31]  Neil Hall,et al.  Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry , 2002, Nature.

[32]  Joseph L. DeRisi,et al.  Tetracyclines Specifically Target the Apicoplast of the Malaria Parasite Plasmodium falciparum , 2006, Antimicrobial Agents and Chemotherapy.

[33]  Ronglin Wang,et al.  Identification of putative plant cold responsive regulatory elements by gene expression profiling and a pattern enumeration algorithm. , 2003, Plant biotechnology journal.

[34]  A. Cowman,et al.  A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria , 2006, Nature.

[35]  M. Kaestli,et al.  Identification of nuclear proteins that interact differentially with Plasmodium falciparum var gene promoters , 2003, Molecular microbiology.

[36]  J. Daily,et al.  Deletion analysis of the 5' flanking sequence of the Plasmodium gallinaceum sexual stage specific gene pgs28 suggests a bipartite arrangement of cis-control elements. , 2001, Molecular and biochemical parasitology.

[37]  M. Frank,et al.  Mutually Exclusive Expression of Virulence Genes by Malaria Parasites Is Regulated Independently of Antigen Production , 2006, PLoS pathogens.

[38]  S. Kyes,et al.  A well‐conserved Plasmodium falciparum var gene shows an unusual stage‐specific transcript pattern , 2003, Molecular microbiology.

[39]  T. Wellems,et al.  Plasmodium falciparum var Genes Are Regulated by Two Regions with Separate Promoters, One Upstream of the Coding Region and a Second within the Intron* , 2003, Journal of Biological Chemistry.

[40]  Matthias Mann,et al.  Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology , 2005, Cell.

[41]  Prakash Chandra Mishra,et al.  The Two Plasmodium falciparum Nucleosome Assembly Proteins Play Distinct Roles in Histone Transport and Chromatin Assembly* , 2006, Journal of Biological Chemistry.

[42]  M. Porter,et al.  Positive and negative effects of deletions and mutations within the 5' flanking sequences of Plasmodium falciparum DNA polymerase δ , 2002 .

[43]  S. Ralph,et al.  Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Neil Hall,et al.  Regulation of Sexual Development of Plasmodium by Translational Repression , 2006, Science.

[45]  Serge Bonnefoy,et al.  A 24 bp cis-acting element essential for the transcriptional activity of Plasmodium falciparum CDP-diacylglycerol synthase gene promoter. , 2002, Molecular and biochemical parasitology.

[46]  E. Berdougo,et al.  Strict Pairing of var Promoters and Introns Is Required for var Gene Silencing in the Malaria Parasite Plasmodium falciparum* , 2006, Journal of Biological Chemistry.

[47]  D. Wirth,et al.  Identification of regulatory elements in the Plasmodium falciparum genome. , 2004, Molecular and biochemical parasitology.

[48]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[49]  M. Huynen,et al.  Combinatorial gene regulation in Plasmodium falciparum. , 2006, Trends in genetics : TIG.

[50]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[51]  J. Lieb,et al.  Evidence for nucleosome depletion at active regulatory regions genome-wide , 2004, Nature Genetics.

[52]  Michael Grunstein,et al.  Genome-wide patterns of histone modifications in yeast , 2006, Nature Reviews Molecular Cell Biology.

[53]  A. Holder,et al.  The histones of Plasmodium falciparum: identification, purification and a possible role in the pathology of malaria , 1997, Parasitology.

[54]  L. Cui,et al.  Plasmodium falciparum Histone Acetyltransferase, a Yeast GCN5 Homologue Involved in Chromatin Remodeling , 2004, Eukaryotic Cell.

[55]  S. Schreiber,et al.  Global nucleosome occupancy in yeast , 2004, Genome Biology.

[56]  D. Wirth,et al.  Linker scanning mutagenesis of the Plasmodium gallinaceum sexual stage specific gene pgs28 reveals a novel downstream cis-control element. , 2003, Molecular and biochemical parasitology.