Electric vehicles batteries thermal management systems employing phase change materials

Abstract Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

[1]  Nihad Dukhan,et al.  Initial analysis of PCM integrated solar collectors , 2006 .

[2]  Guoqing Zhang,et al.  Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins , 2016 .

[3]  J. Selman,et al.  A novel thermal management system for electric vehicle batteries using phase-change material , 2000 .

[4]  A. Babapoor,et al.  Thermal management of a Li-ion battery using carbon fiber-PCM composites , 2015 .

[5]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[6]  Yucheng He,et al.  Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials , 2014 .

[7]  Mohammad Reza Salimpour,et al.  Using multi-shell phase change materials layers for cooling a lithium-ion battery , 2016 .

[8]  Zhonghao Rao,et al.  A review of power battery thermal energy management , 2011 .

[9]  Yuwen Zhang,et al.  Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam , 2015 .

[10]  Yannick Berthou Étude de parois de bâtiments passifs associant un Matériau à Changement de Phase (MCP) et une super isolation transparents , 2011 .

[11]  Charles-Victor Hémery,et al.  Etudes des phénomènes thermiques dans les batteries Li-ion. , 2013 .

[12]  Z. Zhang,et al.  Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells , 1998 .

[13]  Romeu Vicente,et al.  Phase change materials and carbon nanostructures for thermal energy storage: A literature review , 2017 .

[14]  Karim Zaghib,et al.  Electrochemical and Thermal Studies of Carbon-Coated LiFePO4 Cathode , 2009 .

[15]  Hassan Fathabadi,et al.  High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles , 2014 .

[16]  Junjie Gu,et al.  An experimental study of lithium ion battery thermal management using flexible hydrogel films , 2014 .

[17]  Jean-François Reynaud,et al.  Recherches d'optimums d'énergie pour charge/décharge d'une batterie à technologie avancée dédiée à des applications photovoltaïques , 2011 .

[18]  Chester G. Motloch,et al.  Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries , 2003 .

[19]  Andrew Mills,et al.  Simulation of passive thermal management system for lithium-ion battery packs , 2005 .

[20]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[21]  Wei Yang,et al.  Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage , 2015 .

[22]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[23]  J. Selman,et al.  Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution , 2008 .

[24]  Seok-Gwang Doo,et al.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density , 2015, Nature Communications.

[25]  J. Darkwa,et al.  Enhanced laminated composite phase change material for energy storage , 2011 .

[26]  Upendra S. Rohatgi,et al.  Investigation of Heat Pipe Cooling of LI-Ion Batteries , 2016 .

[27]  Noel León,et al.  High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques , 2013 .

[28]  Pascal Henry Biwole,et al.  Phase-change materials to improve solar panel's performance , 2013 .

[29]  Jiateng Zhao,et al.  Investigation of power battery thermal management by using mini-channel cold plate , 2015 .

[30]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[31]  Federico Bella,et al.  Newly Elaborated Multipurpose Polymer Electrolyte Encompassing RTILs for Smart Energy-Efficient Devices. , 2015, ACS applied materials & interfaces.

[32]  Huanzhi Zhang,et al.  Silica encapsulation of n-octadecane via sol-gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. , 2010, Journal of colloid and interface science.

[33]  Jay F. Whitacre,et al.  The effect of high temperature exposure upon the performance of lithium ion cells , 2002, Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No.02TH8576).

[34]  Rui Liu,et al.  Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs , 2013 .

[35]  Ibrahim Dincer,et al.  Heat transfer and thermal management of electric vehicle batteries with phase change materials , 2011 .

[36]  Liquan Chen,et al.  Overcharge investigation of lithium-ion polymer batteries , 2006 .

[37]  Huibin Yin,et al.  Experimental research on heat transfer mechanism of heat sink with composite phase change materials , 2008 .

[38]  J. Xamán,et al.  Cooling Li-ion batteries of racing solar car by using multiple phase change materials , 2016 .

[39]  M. Alipanah,et al.  Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams , 2016 .

[40]  Christopher J. Orendorff,et al.  Failure propagation in multi-cell lithium ion batteries , 2015 .

[41]  Qian Huang,et al.  Thermal study on single electrodes in lithium-ion battery , 2006 .

[42]  Ralph E. White,et al.  Capacity fade of Sony 18650 cells cycled at elevated temperatures. Part II. Capacity fade analysis , 2002 .

[43]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[44]  Zhonghao Rao,et al.  Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam , 2015 .

[45]  Doron Aurbach,et al.  A review on new solutions, new measurements procedures and new materials for rechargeable Li batteries , 2005 .

[46]  Zhonghao Rao,et al.  Experimental investigation on thermal management of electric vehicle battery with heat pipe , 2013 .

[47]  J. Selman,et al.  Cooperative research on safety fundamentals of lithium batteries , 2001 .

[48]  Hui Li,et al.  Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials , 2010 .

[49]  Yang Hou,et al.  Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries , 2017 .

[50]  Tao An,et al.  Tellurium@Ordered Macroporous Carbon Composite and Free‐Standing Tellurium Nanowire Mat as Cathode Materials for Rechargeable Lithium–Tellurium Batteries , 2015 .

[51]  M.P. Garcia,et al.  Battery thermal management system , 2004, INTELEC 2004. 26th Annual International Telecommunications Energy Conference.

[52]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[53]  A. Sari,et al.  Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications , 2007 .

[54]  Nasrudin Abd Rahim,et al.  Review of PCM based cooling technologies for buildings , 2012 .

[55]  Michael Hinterberger,et al.  Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules , 2014 .

[56]  Anthony Jarrett,et al.  Design optimization of electric vehicle battery cooling plates for thermal performance , 2011 .

[57]  Takamitsu Tajima,et al.  Boiling Liquid Battery Cooling for Electric Vehicle , 2014, 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific).

[58]  Zhengguo Zhang,et al.  Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system , 2014 .

[59]  J. Dahn,et al.  Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte , 1999 .

[60]  Chester G. Motloch,et al.  A capacity and power fade study of Li-ion cells during life cycle testing , 2003 .

[61]  Bernard Desmet,et al.  Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery , 2014 .

[62]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[63]  Ibrahim Dincer,et al.  Modeling of passive thermal management for electric vehicle battery packs with PCM between cells , 2014 .

[64]  Yu Kuahai,et al.  Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack , 2014 .

[65]  M. Farid,et al.  Improving thermal performance of freezers using phase change materials. , 2012 .

[66]  Qingsong Wang,et al.  Numerical study on the thermal performance of a composite board in battery thermal management system , 2016 .

[67]  Akram Eddahech Modélisation du vieillissement et détermination de l’état de santé de batteries lithium-ion pour application véhicule électrique et hybride , 2013 .

[68]  Ya-Ling He,et al.  Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes , 2015 .

[69]  Frédéric Kuznik,et al.  A review on phase change materials integrated in building walls , 2011 .

[70]  Farah Souayfane,et al.  Phase change materials (PCM) for cooling applications in buildings: A review , 2016 .

[71]  Karthik Panchabikesan,et al.  Review on phase change material based free cooling of buildings—The way toward sustainability , 2015 .

[72]  Hongsup Lim,et al.  Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2 , 2002 .

[73]  Jason K. Ostanek,et al.  Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions , 2016 .

[74]  M. Fowler,et al.  A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis , 2014 .

[75]  X. M. Xu,et al.  Research on the heat dissipation performance of battery pack based on forced air cooling , 2013 .

[76]  Mohammed M. Farid,et al.  The use of PCM panels to improve storage condition of frozen food. , 2010 .

[77]  Jing Liu,et al.  Thermal management of Li-ion battery with liquid metal , 2016 .

[78]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[79]  Federico Bella,et al.  Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries , 2016 .

[80]  Rui Zhao,et al.  A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system , 2015 .

[81]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[82]  Doron Aurbach,et al.  The study of capacity fading processes of Li-ion batteries: major factors that play a role , 2003 .

[83]  Fariborz Haghighat,et al.  Thermal energy storage with phase change material—A state-of-the art review , 2014 .

[84]  D. Abraham,et al.  Diagnostic examination of thermally abused high-power lithium-ion cells , 2006 .

[85]  Philippe Marty,et al.  Experimental performances of a battery thermal management system using a phase change material , 2014 .

[86]  K. Amine,et al.  High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells , 2005 .

[87]  Guohua Wang,et al.  Status and development of electric vehicle integrated thermal management from BTM to HVAC , 2015 .

[88]  Juhua Huang,et al.  Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management , 2016 .

[89]  Arun S. Mujumdar,et al.  Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery , 2012 .

[90]  Henk Nijmeijer,et al.  Battery thermal management by boiling heat-transfer , 2014 .

[91]  Zhonghao Rao,et al.  Experimental study of an OHP-cooled thermal management system for electric vehicle power battery , 2014 .

[92]  M. A. Habib,et al.  The effect of temperature on capacity and power in cycled lithium ion batteries , 2005 .

[93]  Salvatore Vasta,et al.  Thermal conductivity measurement of a PCM based storage system containing carbon fibers , 2005 .

[94]  D. D. MacNeil,et al.  The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li0.5CoO2 , 2001 .

[95]  A. Greco,et al.  A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes , 2014 .

[96]  Stefano Alessandrini,et al.  Impact of the electric vehicles on the air pollution from a highway , 2016 .

[97]  Jinyue Yan,et al.  Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage , 2009 .

[98]  Rangga Aji Pamungkas,et al.  Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application , 2016 .

[99]  Tao Wang,et al.  Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies , 2014 .

[100]  Yuwen Zhang,et al.  Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles , 2015 .

[101]  Zhonghao Rao,et al.  Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system , 2016 .

[102]  Jiuchun Jiang,et al.  Comparison of different cooling methods for lithium ion battery cells , 2016 .

[103]  Juan Carlos Ramos,et al.  Novel thermal management system design methodology for power lithium-ion battery , 2014 .

[104]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[105]  B. Li,et al.  Experimental investigation on EV battery cooling and heating by heat pipes , 2015 .

[106]  Ahmad Pesaran,et al.  Battery thermal models for hybrid vehicle simulations , 2002 .

[107]  Tao Wang,et al.  Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model , 2015 .

[108]  J. Selman,et al.  Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications , 2002 .

[109]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[110]  Yuwen Zhang,et al.  Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Nonmetal Foams , 2016 .

[111]  Vigna Kumaran Ramachandaramurthy,et al.  A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects , 2015 .

[112]  Ibrahim Dincer,et al.  Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles , 2014 .

[113]  Akiyoshi Kuroda,et al.  Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices , 2016 .

[114]  Said Al-Hallaj,et al.  An alternative cooling system to enhance the safety of Li-ion battery packs , 2009 .

[115]  Said Al-Hallaj,et al.  Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter , 2004 .

[116]  Bernard Sahut,et al.  Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery , 2014 .

[117]  Quentin Badey,et al.  Étude des mécanismes et modélisation du vieillissement des batteries lithium-ion dans le cadre d’un usage automobile , 2012 .

[118]  Delphine Riu,et al.  A review on lithium-ion battery ageing mechanisms and estimations for automotive applications , 2013 .

[119]  Mao-Sung Wu,et al.  Heat dissipation design for lithium-ion batteries , 2002 .

[120]  Junjie Gu,et al.  Investigation on a hydrogel based passive thermal management system for lithium ion batteries , 2014 .

[121]  Ibrahim Dincer,et al.  Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery , 2016 .

[122]  Jiateng Zhao,et al.  Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery , 2015 .

[123]  Zhengguo Zhang,et al.  A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling , 2015 .

[124]  Guojun Li,et al.  Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack , 2016 .

[125]  R. Kizilel,et al.  Passive thermal management using phase change material (PCM) for EV and HEV Li- ion batteries , 2005, 2005 IEEE Vehicle Power and Propulsion Conference.

[126]  J. Crepeau,et al.  Phase Change Heat Transfer Enhancement Using Copper Porous Foam , 2008 .

[127]  Jiateng Zhao,et al.  Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles , 2015 .

[128]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[129]  Rui Liu,et al.  Numerical investigation of thermal behaviors in lithium-ion battery stack discharge , 2014 .

[130]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[131]  Lei Wang,et al.  Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules , 2014 .

[132]  Jun Wang,et al.  Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties , 2010 .

[133]  Dinh Vinh Do Diagnostic de batteries lithium ion dans les applications embarquées , 2010 .

[134]  A. Balandin,et al.  Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries , 2013, 1305.4140.

[135]  N. Sato Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles , 2001 .

[136]  Subrata Mondal,et al.  Phase change materials for smart textiles – An overview , 2008 .

[137]  J. Selman,et al.  Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation , 2005 .

[138]  Yanbao Ma,et al.  Thermal management for high power lithium-ion battery by minichannel aluminum tubes , 2016 .

[139]  Zhonghao Rao,et al.  Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling , 2016 .

[140]  Yo Kobayashi,et al.  Cycle life estimation of Lithium secondary battery by extrapolation method and accelerated aging test , 2001 .

[141]  Pramod B. Salunkhe,et al.  A review on effect of phase change material encapsulation on the thermal performance of a system , 2012 .

[142]  Anthony Jarrett,et al.  Influence of operating conditions on the optimum design of electric vehicle battery cooling plates , 2014 .

[143]  Gholamreza Karimi,et al.  Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers , 2016 .

[144]  Greg F. Naterer,et al.  Heat transfer in phase change materials for thermal management of electric vehicle battery modules , 2010 .

[145]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[146]  X. Xu,et al.  Review on the heat dissipation performance of battery pack with different structures and operation conditions , 2014 .

[147]  K. Kitoh,et al.  100 Wh Large size Li-ion batteries and safety tests , 1999 .

[148]  A. Pesaran,et al.  A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles , 2013 .

[149]  Daniel H. Doughty,et al.  A General Discussion of Li Ion Battery Safety , 2012 .

[150]  Zhonghao Rao,et al.  Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system , 2016 .

[151]  J. Selman,et al.  Thermal conductivity enhancement of phase change materials using a graphite matrix , 2006 .

[152]  Ibrahim Dincer,et al.  Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles , 2016 .

[153]  M. Broussely,et al.  On safety of lithium-ion cells , 1999 .

[154]  André Bontemps,et al.  Realization, test and modelling of honeycomb wallboards containing a Phase Change Material , 2011 .

[155]  Luisa F. Cabeza,et al.  Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage , 2015 .

[156]  Lixian Sun,et al.  Thermal conductivity enhancement of Ag nanowires on an organic phase change material , 2010 .

[157]  Vincent Ayel,et al.  Experimental investigation of a pulsating heat pipe for hybrid vehicle applications , 2013 .

[158]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[159]  Gi-Heon Kim,et al.  A three-dimensional multi-physics model for a Li-ion battery , 2013 .

[160]  Ganesan Nagasubramanian,et al.  Accelerated power degradation of Li-ion cells , 2003 .