Invariance-based estimating equations for skew-symmetric distributions

SummaryWe develop estimating equations for the parameters of the base density of a skew-symmetric distribution. The method is based on an invariance property with respect to asymmetry. Various properties of this approach and the selection of a root are discussed. We also present several extensions of the methodology, namely to the regression setting, the multivariate case, and the skew-t distribution. The approach is illustrated on several simulations and a numerical example.

[1]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[2]  David R. Cox,et al.  Unbiased estimating equations derived from statistics that are functions of a parameter , 1993 .

[3]  A. Goldman An Introduction to Regression Graphics , 1995 .

[4]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[5]  M. Chiogna Some results on the scalar Skew-normal distribution , 1998 .

[6]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[7]  B. Lindsay,et al.  Improving generalised estimating equations using quadratic inference functions , 2000 .

[8]  M. Genton,et al.  Moments of skew-normal random vectors and their quadratic forms , 2001 .

[9]  M. Genton,et al.  A SKEW-SYMMETRIC REPRESENTATION OF MULTIVARIATE DISTRIBUTIONS , 2002 .

[10]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[11]  Marc G. Genton,et al.  A note on an equivalence between chi"square and generalized skew"normal distributions , 2004 .

[12]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[13]  M. Genton,et al.  Flexible Class of Skew‐Symmetric Distributions , 2004 .

[14]  M. Genton,et al.  Generalized skew-elliptical distributions and their quadratic forms , 2005 .

[15]  A. Azzalini The Skew‐normal Distribution and Related Multivariate Families * , 2005 .

[16]  P. Embrechts Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005 .

[17]  A. Tsiatis,et al.  Locally Efficient Semiparametric Estimators for Generalized Skew-Elliptical Distributions , 2005 .

[18]  M. Genton,et al.  A unified view on skewed distributions arising from selections , 2006 .

[19]  Yanyuan Ma,et al.  Constrained local likelihood estimators for semiparametric skew-normal distributions , 2007 .

[20]  M. Genton,et al.  Robust Likelihood Methods Based on the Skew‐t and Related Distributions , 2008 .

[21]  M. Genton,et al.  An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators , 2010 .