Invariance-based estimating equations for skew-symmetric distributions
暂无分享,去创建一个
[1] A. Azzalini. A class of distributions which includes the normal ones , 1985 .
[2] David R. Cox,et al. Unbiased estimating equations derived from statistics that are functions of a parameter , 1993 .
[3] A. Goldman. An Introduction to Regression Graphics , 1995 .
[4] A. Azzalini,et al. The multivariate skew-normal distribution , 1996 .
[5] M. Chiogna. Some results on the scalar Skew-normal distribution , 1998 .
[6] A. Azzalini,et al. Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.
[7] B. Lindsay,et al. Improving generalised estimating equations using quadratic inference functions , 2000 .
[8] M. Genton,et al. Moments of skew-normal random vectors and their quadratic forms , 2001 .
[9] M. Genton,et al. A SKEW-SYMMETRIC REPRESENTATION OF MULTIVARIATE DISTRIBUTIONS , 2002 .
[10] A. Azzalini,et al. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.
[11] Marc G. Genton,et al. A note on an equivalence between chi"square and generalized skew"normal distributions , 2004 .
[12] Arjun K. Gupta,et al. A multivariate skew normal distribution , 2004 .
[13] M. Genton,et al. Flexible Class of Skew‐Symmetric Distributions , 2004 .
[14] M. Genton,et al. Generalized skew-elliptical distributions and their quadratic forms , 2005 .
[15] A. Azzalini. The Skew‐normal Distribution and Related Multivariate Families * , 2005 .
[16] P. Embrechts. Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005 .
[17] A. Tsiatis,et al. Locally Efficient Semiparametric Estimators for Generalized Skew-Elliptical Distributions , 2005 .
[18] M. Genton,et al. A unified view on skewed distributions arising from selections , 2006 .
[19] Yanyuan Ma,et al. Constrained local likelihood estimators for semiparametric skew-normal distributions , 2007 .
[20] M. Genton,et al. Robust Likelihood Methods Based on the Skew‐t and Related Distributions , 2008 .
[21] M. Genton,et al. An invariance property of quadratic forms in random vectors with a selection distribution, with application to sample variogram and covariogram estimators , 2010 .