In situ Electrochemical Generation of Nitric Oxide for Neuronal Modulation

[1]  Hailey J Knox,et al.  Near-Infrared Photoactivatable Nitric Oxide Donors with Integrated Photoacoustic Monitoring. , 2018, Journal of the American Chemical Society.

[2]  M. Schoenfisch,et al.  Controlled release of nitric oxide from liposomes. , 2017, ACS biomaterials science & engineering.

[3]  Huijing Xiang,et al.  Transition-Metal Nitrosyls for Photocontrolled Nitric Oxide Delivery , 2017 .

[4]  X. Jia,et al.  One-Step Optogenetics with Multifunctional Flexible Polymer Fibers , 2017, Nature Neuroscience.

[5]  K. Nielsch,et al.  Electrochemical and in situ magnetic study of iron/iron oxide films oxidized and reduced in KOH solution for magneto-ionic switching , 2016 .

[6]  H. Hirase,et al.  Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain , 2016, Nature Communications.

[7]  Polina Anikeeva,et al.  Wireless magnetothermal deep brain stimulation , 2015, Science.

[8]  Christina M. Tringides,et al.  Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo , 2015, Nature Biotechnology.

[9]  J. Lennerz,et al.  H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO–TRPA1–CGRP signalling pathway , 2014, Nature Communications.

[10]  M. Block,et al.  Neuroprotection Versus Neurotoxicity , 2014 .

[11]  Raag D. Airan,et al.  Natural Neural Projection Dynamics Underlying Social Behavior , 2014, Cell.

[12]  K. Fox,et al.  The role of nitric oxide in pre-synaptic plasticity and homeostasis , 2013, Front. Cell. Neurosci..

[13]  Patrick L. Holland,et al.  Generation of high-spin iron(I) in a protein environment using cryoreduction. , 2013, Inorganic chemistry.

[14]  M. Klotz,et al.  Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. , 2013, Biochimica et biophysica acta.

[15]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[16]  G. Ameer,et al.  Polymer‐Based Nitric Oxide Therapies: Recent Insights for Biomedical Applications , 2012, Advanced functional materials.

[17]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[18]  A. Patapoutian,et al.  TRPV1 and TRPA1 Mediate Peripheral Nitric Oxide-Induced Nociception in Mice , 2009, PloS one.

[19]  M. Koper,et al.  Nitrogen Cycle Electrocatalysis , 2009 .

[20]  M. Koper,et al.  Nitrogen cycle electrocatalysis. , 2009, Chemical reviews.

[21]  S. Snyder,et al.  Signaling by Gasotransmitters , 2009, Science Signaling.

[22]  Mark T. Gladwin,et al.  The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics , 2008, Nature Reviews Drug Discovery.

[23]  D. Butterfield,et al.  Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity , 2007, Nature Reviews Neuroscience.

[24]  Paul L Huang,et al.  Cardiovascular roles of nitric oxide: a review of insights from nitric oxide synthase gene disrupted mice. , 2007, Cardiovascular research.

[25]  M. R. Miller,et al.  Recent developments in nitric oxide donor drugs , 2007, British journal of pharmacology.

[26]  J. Kauer,et al.  Opioids block long-term potentiation of inhibitory synapses , 2007, Nature.

[27]  M. Tominaga,et al.  Nitric oxide activates TRP channels by cysteine S-nitrosylation , 2006, Nature chemical biology.

[28]  W. Deen,et al.  Diffusivity and Solubility of Nitric Oxide in Water and Saline , 2005, Annals of Biomedical Engineering.

[29]  M. Murphy,et al.  Side-On Copper-Nitrosyl Coordination by Nitrite Reductase , 2004, Science.

[30]  Young Woon Kim,et al.  Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. , 2003, Journal of the American Chemical Society.

[31]  Qun Sun,et al.  N-(4-Tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a Novel, Orally Effective Vanilloid Receptor 1 Antagonist with Analgesic Properties: I. In Vitro Characterization and Pharmacokinetic Properties , 2003, Journal of Pharmacology and Experimental Therapeutics.

[32]  P. Mander,et al.  Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration , 2002, Neuroscience.

[33]  Ming Xian,et al.  Nitric oxide donors: chemical activities and biological applications. , 2002, Chemical reviews.

[34]  A. Milchev,et al.  Electrodeposition of platinum on metallic and nonmetallic substrates — selection of experimental conditions , 2001 .

[35]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[36]  Paul Tempst,et al.  Protein S-nitrosylation: a physiological signal for neuronal nitric oxide , 2001, Nature Cell Biology.

[37]  Xiaoping Liu,et al.  The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Stuart,et al.  Direct measurement of specific membrane capacitance in neurons. , 2000, Biophysical journal.

[39]  Kojima,et al.  Fluorescent Indicators for Imaging Nitric Oxide Production. , 1999, Angewandte Chemie.

[40]  R. Huber,et al.  Structure of cytochrome c nitrite reductase , 1999, Nature.

[41]  V. Felipo,et al.  Chronic hyperammonemia impairs the glutamate–nitric oxide–cyclic GMP pathway in cerebellar neurons in culture and in the rat in vivo , 1998, The European journal of neuroscience.

[42]  M. Feelisch The use of nitric oxide donors in pharmacological studies , 1998, Naunyn-Schmiedeberg's Archives of Pharmacology.

[43]  S. Goldstein,et al.  MECHANISM OF THE NITROSATION OF THIOLS AND AMINES BY OXYGENATED NO SOLUTIONS : THE NATURE OF THE NITROSATING INTERMEDIATES , 1996 .

[44]  S. Goldstein,et al.  Kinetics of Nitric Oxide Autoxidation in Aqueous Solution in the Absence and Presence of Various Reductants. The Nature of the Oxidizing Intermediates , 1995 .

[45]  M. Moskowitz,et al.  The NOS Inhibitor, 7-Nitroindazole, Decreases Focal Infarct Volume but Not the Response to Topical Acetylcholine in Pial Vessels , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[46]  M. Moskowitz,et al.  Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. , 1994, Science.

[47]  T. Curran,et al.  Expression of c-fos protein in brain: metabolic mapping at the cellular level. , 1988, Science.

[48]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[50]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[51]  S. Bruckenstein,et al.  The electroduction of nitrite in 0.1 M HClO4 at platinum , 1974 .

[52]  D. Hobbs,et al.  Electrochemical reduction of nitrates and nitrites in alkaline nuclear waste solutions , 1996 .

[53]  S. Snyder,et al.  Nitric oxide: a physiologic messenger molecule. , 1994, Annual review of biochemistry.

[54]  R. Furchgott,et al.  Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. , 1991, Blood vessels.

[55]  H. Verdouw,et al.  Ammonia determination based on indophenol formation with sodium salicylate , 1978 .