Multilevel ensemble Kalman filtering

This work embeds a multilevel Monte Carlo sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF) in the setting of finite dimensional signal evolution and noisy discrete-time observations. The signal dynamics is assumed to be governed by a stochastic differential equation (SDE), and a hierarchy of time grids is introduced for multilevel numerical integration of that SDE. The resulting multilevel EnKF is proved to asymptotically outperform EnKF in terms of computational cost versus approximation accuracy. The theoretical results are illustrated numerically.

[1]  R. P. Fedorenko A relaxation method for solving elliptic difference equations , 1962 .

[2]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[3]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[4]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[5]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[6]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[7]  Yaofeng Ren,et al.  On the best constant in Marcinkiewicz-Zygmund inequality , 2001 .

[8]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[9]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[10]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[11]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[12]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[13]  A. Gut Probability: A Graduate Course , 2005 .

[14]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[15]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[16]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[17]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[18]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[19]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[20]  Rainer Avikainen On irregular functionals of SDEs and the Euler scheme , 2009, Finance Stochastics.

[21]  F. Gland,et al.  Large sample asymptotics for the ensemble Kalman filter , 2009 .

[22]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[23]  J. Mandel,et al.  On the convergence of the ensemble Kalman filter , 2009, Applications of mathematics.

[24]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[25]  Hermann G. Matthies,et al.  A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .

[26]  Siddhartha Mishra,et al.  Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data , 2012, Math. Comput..

[27]  Jeffrey L. Anderson Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation , 2012 .

[28]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[29]  D. Talay,et al.  Stochastic simulation and Monte-Carlo methods , 2013 .

[30]  Raúl Tempone,et al.  Implementation and analysis of an adaptive multilevel Monte Carlo algorithm , 2014, Monte Carlo Methods Appl..

[31]  Hamidou Tembine,et al.  Deterministic Methods for Nonlinear Filtering, part I: Mean-field Ensemble Kalman Filtering , 2014 .

[32]  M. Giles,et al.  Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lévy area simulation , 2012, 1202.6283.

[33]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[34]  K. Kamatani,et al.  Multilevel particle filter , 2015 .

[35]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[36]  Alexey Chernov,et al.  Convergence analysis of multilevel Monte Carlo variance estimators and application for random obstacle problems , 2015, Numerische Mathematik.

[37]  T. J. Dodwell,et al.  A Hierarchical Multilevel Markov Chain Monte Carlo Algorithm with Applications to Uncertainty Quantification in Subsurface Flow , 2013, SIAM/ASA J. Uncertain. Quantification.

[38]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[39]  A. GREGORY,et al.  Multilevel Ensemble Transform Particle Filtering , 2015, SIAM J. Sci. Comput..

[40]  Hamidou Tembine,et al.  Deterministic Mean-Field Ensemble Kalman Filtering , 2014, SIAM J. Sci. Comput..