A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains
暂无分享,去创建一个
[1] Charles M. Elliott,et al. On algorithms with good mesh properties for problems with moving boundaries based on the Harmonic Map Heat Flow and the DeTurck trick , 2016, 1609.03373.
[2] Fabio Nobile,et al. Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .
[3] Charles M. Elliott,et al. On some linear parabolic PDEs on moving hypersurfaces , 2014, 1412.1624.
[4] Harald Garcke,et al. ON THE STABLE NUMERICAL APPROXIMATION OF TWO-PHASE FLOW WITH INSOLUBLE SURFACTANT , 2013, 1311.4432.
[5] Emmanuel Hebey. Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .
[6] Charles M. Elliott,et al. Coupled Bulk-Surface Free Boundary Problems Arising from a Mathematical Model of Receptor-Ligand Dynamics , 2015, SIAM J. Math. Anal..
[7] Ricardo H. Nochetto,et al. Time-discrete higher order ALE formulations: a priori error analysis , 2013, Numerische Mathematik.
[8] Daniele Boffi,et al. Stability and geometric conservation laws for ALE formulations , 2004 .
[9] Peter Hansbo,et al. Cut finite element methods for coupled bulk–surface problems , 2014, Numerische Mathematik.
[10] Buyang Li,et al. Convergence of finite elements on an evolving surface driven by diffusion on the surface , 2016, Numerische Mathematik.
[11] C. M. Elliott,et al. Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .
[12] C. M. Elliott,et al. Error analysis for an ALE evolving surface finite element method , 2014, 1403.1402.
[13] Santiago Badia,et al. Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework , 2006, SIAM J. Numer. Anal..
[14] G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .
[15] Charles M. Elliott,et al. Evolving surface finite element method for the Cahn–Hilliard equation , 2013, Numerische Mathematik.
[16] Qiang Du,et al. Finite element approximation of the Cahn–Hilliard equation on surfaces , 2011 .
[17] C. M. Elliott,et al. Geometric partial differential equations: Surface and bulk processes , 2015 .
[18] P. G. Ciarlet,et al. Interpolation theory over curved elements, with applications to finite element methods , 1972 .
[19] Christoph Lehrenfeld,et al. An Eulerian finite element method for PDEs in time-dependent domains , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.
[20] Charles M. Elliott,et al. An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..
[21] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[22] J. Eells,et al. NONLINEAR ANALYSIS ON MANIFOLDS MONGE-AMPÈRE EQUATIONS (Grundlehren der mathematischen Wissenschaften, 252) , 1984 .
[23] Bal'azs Kov'acs,et al. Higher-order time discretizations with ALE finite elements for parabolic problems on evolving surfaces , 2014, 1410.0486.
[24] Fabio Nobile,et al. A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .
[25] Roger A. Sauer,et al. An isogeometric finite element formulation for phase transitions on deforming surfaces , 2017, Computer Methods in Applied Mechanics and Engineering.
[26] Klaus Deckelnick,et al. Stability and error analysis for a diffuse interface approach to an advection–diffusion equation on a moving surface , 2018, Numerische Mathematik.
[27] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[28] J. Halleux,et al. An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .
[29] Buyang Li,et al. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces , 2018, Numerische Mathematik.
[30] Ricardo H. Nochetto,et al. Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..
[31] Charles M. Elliott,et al. A Coupled Ligand-Receptor Bulk-Surface System on a Moving Domain: Well Posedness, Regularity, and Convergence to Equilibrium , 2016, SIAM J. Math. Anal..
[32] Charles M. Elliott,et al. L2-estimates for the evolving surface finite element method , 2012, Math. Comput..
[33] Paola Pozzi,et al. Elastic flow interacting with a lateral diffusion process: The one-dimensional graph case , 2017, 1707.08643.
[34] Charles M. Elliott,et al. An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .
[35] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[36] Charles M. Elliott,et al. Hamilton-Jacobi equations on an evolving surface , 2018, Math. Comput..
[37] C. Bernardi. Optimal finite-element interpolation on curved domains , 1989 .
[38] Jim Douglas,et al. Galerkin methods for parabolic equations with nonlinear boundary conditions , 1973 .
[39] M. Arroyo,et al. Modelling fluid deformable surfaces with an emphasis on biological interfaces , 2018, Journal of Fluid Mechanics.
[40] Paola Pozzi,et al. Curve shortening flow coupled to lateral diffusion , 2015, Numerische Mathematik.
[41] Alan Demlow,et al. Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..
[42] Joerg Kuhnert,et al. A fully Lagrangian meshfree framework for PDEs on evolving surfaces , 2019, J. Comput. Phys..
[43] John W. Barrett,et al. Numerical Analysis for a System Coupling Curve Evolution to Reaction Diffusion on the Curve , 2016, SIAM J. Numer. Anal..
[44] Balázs Kovács,et al. High-order evolving surface finite element method for parabolic problems on evolving surfaces , 2016, 1606.07234.
[45] Charles M. Elliott,et al. Unfitted Finite Element Methods Using Bulk Meshes for Surface Partial Differential Equations , 2013, SIAM J. Numer. Anal..
[46] Gerhard Dziuk,et al. Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .
[47] Ilse C. F. Ipsen,et al. Perturbation Bounds for Determinants and Characteristic Polynomials , 2008, SIAM J. Matrix Anal. Appl..
[48] Lucia Gastaldi,et al. A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..
[49] R. Codina,et al. Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales , 2002 .
[50] J. Nédélec,et al. Curved finite element methods for the solution of singular integral equations on surfaces in R3 , 1976 .
[51] G S.,et al. A trace finite element method for a class of coupled bulk-interface transport problems , 2014 .
[52] Charles M. Elliott,et al. An abstract framework for parabolic PDEs on evolving spaces , 2014, 1403.4500.
[53] C. Lubich,et al. Numerical analysis of parabolic problems with dynamic boundary conditions , 2015, 1501.01882.
[54] Maxim A. Olshanskii,et al. An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..
[55] Adrian J. Lew,et al. Unified Analysis of Finite Element Methods for Problems with Moving Boundaries , 2015, SIAM J. Numer. Anal..
[56] L. Formaggia,et al. Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .
[57] C. M. Elliott,et al. A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..
[58] Wing Kam Liu,et al. Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .
[59] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[60] M. Vierling,et al. Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control – theory and numerical realization , 2014 .
[61] Maxim A. Olshanskii,et al. Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.
[62] Thomas Müller,et al. Geometric error of finite volume schemes for conservation laws on evolving surfaces , 2013, Numerische Mathematik.
[63] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[64] M. Olshanskii,et al. A Stabilized Trace Finite Element Method for Partial Differential Equations on Evolving Surfaces , 2017, SIAM J. Numer. Anal..
[65] C. M. Elliott,et al. An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .
[66] Charles M. Elliott,et al. Finite element methods for surface PDEs* , 2013, Acta Numerica.
[67] Morton E. Gurtin,et al. Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces , 2005, Journal of Fluid Mechanics.
[68] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[69] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[70] Chandrasekhar Venkataraman,et al. Backward difference time discretization of parabolic differential equations on evolving surfaces , 2013 .
[71] Catherine E. Powell,et al. Parameter-free H(div) preconditioning for a mixed finite element formulation of diffusion problems , 2005 .
[72] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[73] Alan Demlow,et al. An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..