A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains

We develop a unified theory for continuous in time finite element discretisations of partial differential equations posed in evolving domains including the consideration of equations posed on evolving surfaces and bulk domains as well coupled surface bulk systems. We use an abstract variational setting with time dependent function spaces and abstract time dependent finite element spaces. Optimal a priori bounds are shown under usual assumptions on perturbations of bilinear forms and approximation properties of the abstract finite element spaces. The abstract theory is applied to evolving finite elements in both flat and curved spaces. Evolving bulk and surface isoparametric finite element spaces defined on evolving triangulations are defined and developed. These spaces are used to define approximations to parabolic equations in general domains for which the abstract theory is shown to apply. Numerical experiments are described which confirm the rates of convergence.

[1]  Charles M. Elliott,et al.  On algorithms with good mesh properties for problems with moving boundaries based on the Harmonic Map Heat Flow and the DeTurck trick , 2016, 1609.03373.

[2]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[3]  Charles M. Elliott,et al.  On some linear parabolic PDEs on moving hypersurfaces , 2014, 1412.1624.

[4]  Harald Garcke,et al.  ON THE STABLE NUMERICAL APPROXIMATION OF TWO-PHASE FLOW WITH INSOLUBLE SURFACTANT , 2013, 1311.4432.

[5]  Emmanuel Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities , 1999 .

[6]  Charles M. Elliott,et al.  Coupled Bulk-Surface Free Boundary Problems Arising from a Mathematical Model of Receptor-Ligand Dynamics , 2015, SIAM J. Math. Anal..

[7]  Ricardo H. Nochetto,et al.  Time-discrete higher order ALE formulations: a priori error analysis , 2013, Numerische Mathematik.

[8]  Daniele Boffi,et al.  Stability and geometric conservation laws for ALE formulations , 2004 .

[9]  Peter Hansbo,et al.  Cut finite element methods for coupled bulk–surface problems , 2014, Numerische Mathematik.

[10]  Buyang Li,et al.  Convergence of finite elements on an evolving surface driven by diffusion on the surface , 2016, Numerische Mathematik.

[11]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[12]  C. M. Elliott,et al.  Error analysis for an ALE evolving surface finite element method , 2014, 1403.1402.

[13]  Santiago Badia,et al.  Analysis of a Stabilized Finite Element Approximation of the Transient Convection-Diffusion Equation Using an ALE Framework , 2006, SIAM J. Numer. Anal..

[14]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[15]  Charles M. Elliott,et al.  Evolving surface finite element method for the Cahn–Hilliard equation , 2013, Numerische Mathematik.

[16]  Qiang Du,et al.  Finite element approximation of the Cahn–Hilliard equation on surfaces , 2011 .

[17]  C. M. Elliott,et al.  Geometric partial differential equations: Surface and bulk processes , 2015 .

[18]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[19]  Christoph Lehrenfeld,et al.  An Eulerian finite element method for PDEs in time-dependent domains , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[20]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[21]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[22]  J. Eells,et al.  NONLINEAR ANALYSIS ON MANIFOLDS MONGE-AMPÈRE EQUATIONS (Grundlehren der mathematischen Wissenschaften, 252) , 1984 .

[23]  Bal'azs Kov'acs,et al.  Higher-order time discretizations with ALE finite elements for parabolic problems on evolving surfaces , 2014, 1410.0486.

[24]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[25]  Roger A. Sauer,et al.  An isogeometric finite element formulation for phase transitions on deforming surfaces , 2017, Computer Methods in Applied Mechanics and Engineering.

[26]  Klaus Deckelnick,et al.  Stability and error analysis for a diffuse interface approach to an advection–diffusion equation on a moving surface , 2018, Numerische Mathematik.

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[29]  Buyang Li,et al.  A convergent evolving finite element algorithm for mean curvature flow of closed surfaces , 2018, Numerische Mathematik.

[30]  Ricardo H. Nochetto,et al.  Time-Discrete Higher-Order ALE Formulations: Stability , 2013, SIAM J. Numer. Anal..

[31]  Charles M. Elliott,et al.  A Coupled Ligand-Receptor Bulk-Surface System on a Moving Domain: Well Posedness, Regularity, and Convergence to Equilibrium , 2016, SIAM J. Math. Anal..

[32]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[33]  Paola Pozzi,et al.  Elastic flow interacting with a lateral diffusion process: The one-dimensional graph case , 2017, 1707.08643.

[34]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[35]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[36]  Charles M. Elliott,et al.  Hamilton-Jacobi equations on an evolving surface , 2018, Math. Comput..

[37]  C. Bernardi Optimal finite-element interpolation on curved domains , 1989 .

[38]  Jim Douglas,et al.  Galerkin methods for parabolic equations with nonlinear boundary conditions , 1973 .

[39]  M. Arroyo,et al.  Modelling fluid deformable surfaces with an emphasis on biological interfaces , 2018, Journal of Fluid Mechanics.

[40]  Paola Pozzi,et al.  Curve shortening flow coupled to lateral diffusion , 2015, Numerische Mathematik.

[41]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[42]  Joerg Kuhnert,et al.  A fully Lagrangian meshfree framework for PDEs on evolving surfaces , 2019, J. Comput. Phys..

[43]  John W. Barrett,et al.  Numerical Analysis for a System Coupling Curve Evolution to Reaction Diffusion on the Curve , 2016, SIAM J. Numer. Anal..

[44]  Balázs Kovács,et al.  High-order evolving surface finite element method for parabolic problems on evolving surfaces , 2016, 1606.07234.

[45]  Charles M. Elliott,et al.  Unfitted Finite Element Methods Using Bulk Meshes for Surface Partial Differential Equations , 2013, SIAM J. Numer. Anal..

[46]  Gerhard Dziuk,et al.  Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .

[47]  Ilse C. F. Ipsen,et al.  Perturbation Bounds for Determinants and Characteristic Polynomials , 2008, SIAM J. Matrix Anal. Appl..

[48]  Lucia Gastaldi,et al.  A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements , 2001, J. Num. Math..

[49]  R. Codina,et al.  Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales , 2002 .

[50]  J. Nédélec,et al.  Curved finite element methods for the solution of singular integral equations on surfaces in R3 , 1976 .

[51]  G S.,et al.  A trace finite element method for a class of coupled bulk-interface transport problems , 2014 .

[52]  Charles M. Elliott,et al.  An abstract framework for parabolic PDEs on evolving spaces , 2014, 1403.4500.

[53]  C. Lubich,et al.  Numerical analysis of parabolic problems with dynamic boundary conditions , 2015, 1501.01882.

[54]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[55]  Adrian J. Lew,et al.  Unified Analysis of Finite Element Methods for Problems with Moving Boundaries , 2015, SIAM J. Numer. Anal..

[56]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[57]  C. M. Elliott,et al.  A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..

[58]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[59]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[60]  M. Vierling,et al.  Parabolic optimal control problems on evolving surfaces subject to point-wise box constraints on the control – theory and numerical realization , 2014 .

[61]  Maxim A. Olshanskii,et al.  Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.

[62]  Thomas Müller,et al.  Geometric error of finite volume schemes for conservation laws on evolving surfaces , 2013, Numerische Mathematik.

[63]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[64]  M. Olshanskii,et al.  A Stabilized Trace Finite Element Method for Partial Differential Equations on Evolving Surfaces , 2017, SIAM J. Numer. Anal..

[65]  C. M. Elliott,et al.  An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .

[66]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[67]  Morton E. Gurtin,et al.  Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces , 2005, Journal of Fluid Mechanics.

[68]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[69]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[70]  Chandrasekhar Venkataraman,et al.  Backward difference time discretization of parabolic differential equations on evolving surfaces , 2013 .

[71]  Catherine E. Powell,et al.  Parameter-free H(div) preconditioning for a mixed finite element formulation of diffusion problems , 2005 .

[72]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[73]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..