Impurity and dispersion effects on the linear magnetoresistance in the quantum limit

Magnetoresistance, that is, the change of the resistance with the magnetic field, is usually a quadratic function of the field strength. A linear magnetoresistance usually reveal extraordinary properties of a system. In the quantum limit where only the lowest Landau band is occupied, a quantum linear magnetoresistance was believed to be the signature of the Weyl fermions with 3D linear dispersion. Here, we comparatively investigate the quantum-limit magnetoresistance of systems with different band dispersions as well as different types of impurities. We find that the magnetoresistance can also be linear for the quadratic energy dispersion. We show that both longitudinal and transverse magnetoresistance can be linear if long-range-Gaussian-type impurities dominate, but Coulomb-type impurities can only induce linear transverse magnetoresistance. Our findings well explain some of the linear magnetoresistance observed in the experiments and provide new insights to the understanding of quantum-limit magnetoresistance.

[1]  J. Lopes,et al.  Anomalous Transport Signatures in Weyl Semimetals with Point Defects. , 2022, Physical review letters.

[2]  Fan Yang,et al.  Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors , 2022, Chinese Physics B.

[3]  Y. Wang,et al.  Linear magnetoresistance induced by mobility fluctuations in iodine-intercalated tungsten ditelluride , 2022, Physical Review B.

[4]  R. Zheng,et al.  Nontrivial Giant Linear Magnetoresistance in Nodal-Line Semimetal ZrGeSe 2D Layers. , 2021, Nano letters.

[5]  D. Graf,et al.  Topologically driven linear magnetoresistance in helimagnetic FeP , 2020, npj Quantum Materials.

[6]  F. Balakirev,et al.  Linear magnetoresistance with a universal energy scale in the strong-coupling superconductor Mo8Ga41 without quantum criticality , 2020 .

[7]  T. Klimczuk,et al.  Enhanced Mobility and Large Linear Nonsaturating Magnetoresistance in the Magnetically Ordered States of TmNiC_{2}. , 2020, Physical review letters.

[8]  Y. Wang,et al.  Surface-induced linear magnetoresistance in the antiferromagnetic topological insulator MnBi2Te4 , 2020, Physical Review B.

[9]  Hsin Lin,et al.  Magnetotransport properties of the topological nodal-line semimetal CaCdSn , 2020, 2007.08156.

[10]  T. Schenkel,et al.  Magnetoresistance Scaling and the Origin of H -Linear Resistivity in BaFe2(As1−xPx)2 , 2020, Physical Review X.

[11]  Chandan,et al.  Observation of linear magneto-resistance with small cross-over field at room temperature in bismuth , 2020, Journal of Physics D: Applied Physics.

[12]  F. Nori,et al.  Effect of disorder on the transverse magnetoresistance of Weyl semimetals , 2020, 2005.08893.

[13]  Takuma Otsuka,et al.  Quantum transport evidence of Weyl fermions in an epitaxial ferromagnetic oxide , 2020, Nature Communications.

[14]  Di Xiao,et al.  Linear magnetoresistance induced by intra-scattering semiclassics of Bloch electrons , 2015, Physical Review B.

[15]  Guanghou Wang,et al.  Effect of grain boundaries on charge transport in CVD-grown bilayer graphene , 2019, Carbon.

[16]  Guancong Ma,et al.  Topological phases in acoustic and mechanical systems , 2019, Nature Reviews Physics.

[17]  R. Greene,et al.  Correlation between scale-invariant normal-state resistivity and superconductivity in an electron-doped cuprate , 2018, Science Advances.

[18]  Bo Fu,et al.  Intrinsic magnetoresistance in three-dimensional Dirac materials with low carrier density , 2018, Physical Review B.

[19]  J. Betts,et al.  Scale-invariant magnetoresistance in a cuprate superconductor , 2017, Science.

[20]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[21]  Mou Yang,et al.  Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals , 2018 .

[22]  S. Adam,et al.  Equivalence of Effective Medium and Random Resistor Network models for disorder-induced unsaturating linear magnetoresistance , 2017, 1703.05478.

[23]  Yishuai Xu,et al.  Disorder enabled band structure engineering of a topological insulator surface , 2017, Nature Communications.

[24]  H. Sugawara,et al.  Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide , 2016, Nature Communications.

[25]  I. Gornyi,et al.  Magnetoresistance of compensated semimetals in confined geometries , 2016, 1612.02439.

[26]  H. B. Weber,et al.  Origin of nonsaturating linear magnetoresistivity , 2016, 1609.02418.

[27]  K. T. Law,et al.  Magnetoconductivity in Weyl semimetals: Effect of chemical potential and temperature , 2016, 1607.04943.

[28]  J. Maan,et al.  Linear Magnetoresistance in a Quasifree Two-Dimensional Electron Gas in an Ultrahigh Mobility GaAs Quantum Well. , 2016, Physical review letters.

[29]  F. Miao,et al.  Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2 , 2016, Nature Communications.

[30]  P. Bugnon,et al.  Evidence for a Strong Topological Insulator Phase in ZrTe_{5}. , 2016, Physical review letters.

[31]  C. M. Wang,et al.  Anomalous Phase Shift of Quantum Oscillations in 3D Topological Semimetals. , 2016, Physical review letters.

[32]  I. Gornyi,et al.  Linear magnetoresistance in compensated graphene bilayer , 2015, 1512.00667.

[33]  Hai-Zhou Lu,et al.  Negative magnetoresistance in Dirac semimetal Cd3As2 , 2015, Nature Communications.

[34]  Diana Adler,et al.  Electronic Transport In Mesoscopic Systems , 2016 .

[35]  Hai-Zhou Lu,et al.  Linear magnetoconductivity in an intrinsic topological Weyl semimetal , 2015, 1509.02001.

[36]  G. Refael,et al.  Linear magnetoresistance in metals: Guiding center diffusion in a smooth random potential , 2015, 1507.04730.

[37]  A. Mirlin,et al.  Transversal magnetoresistance in Weyl semimetals , 2015, 1507.03481.

[38]  G. Gu,et al.  Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5). , 2015, Physical review letters.

[39]  Hai-Zhou Lu,et al.  High-field magnetoconductivity of topological semimetals with short-range potential , 2015, 1503.04394.

[40]  A. Balatsky,et al.  Filling of magnetic-impurity-induced gap in topological insulators by potential scattering , 2015, 1502.06403.

[41]  C. Felser,et al.  Linear magnetoresistance caused by mobility fluctuations in n-doped Cd(3)As(2). , 2014, Physical review letters.

[42]  Yanfei Zhao,et al.  Anisotropic Fermi Surface and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal Cd 3 As 2 , 2014, 1412.0330.

[43]  I. Gornyi,et al.  Magnetoresistance in two-component systems. , 2014, Physical review letters.

[44]  X. Dai,et al.  Large Linear Magnetoresistance in Dirac Semimetal Cd 3 As 2 with Fermi Surfaces Close to the Dirac Points , 2014, 1405.6611.

[45]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[46]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[47]  S. Y. Li,et al.  Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd₃As₂. , 2014, Physical review letters.

[48]  S. Shen Topological Insulators: Dirac Equation in Condensed Matters , 2013 .

[49]  Feng Yang,et al.  A three-dimensional resistor network model for the linear magnetoresistance of Ag2+δSe and Ag2+δTe bulks , 2008 .

[50]  M. Parish,et al.  Nonsaturating magnetoresistance of inhomogeneous conductors: Comparison of experiment and simulation , 2007, 0705.0393.

[51]  Hiroshi Mizuta,et al.  The Physics and Applications of Resonant Tunnelling Diodes (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering) , 2006 .

[52]  P. Littlewood,et al.  Classical magnetotransport of inhomogeneous conductors , 2005, cond-mat/0508229.

[53]  P. B. Littlewood,et al.  Non-saturating magnetoresistance in heavily disordered semiconductors , 2003, Nature.

[54]  S. S. Murzin,et al.  Electron transport in the extreme quantum limit in applied magnetic field , 2000 .

[55]  T. F. Rosenbaum,et al.  Large magnetoresistance in non-magnetic silver chalcogenides , 1997, Nature.

[56]  P. Rennert,et al.  Many‐particle Physics , 1982 .

[57]  From Low-Field Sondheimer Oscillations to High-Field Very Large and Linear Magnetoresistance in a SrTiO3Based Two-Dimensional Electron Gas , 2022 .