Large scale structural optimization: Computational methods and optimization algorithms

SummaryThe objective of this paper is to investigate the efficiency of various optimization methods based on mathematical programming and evolutionary algorithms for solving structural optimization problems under static and seismic loading conditions. Particular emphasis is given on modified versions of the basic evolutionary algorithms aiming at improving the performance of the optimization procedure. Modified versions of both genetic algorithms and evolution strategies combined with mathematical programming methods to form hybrid methodologies are also tested and compared and proved particularly promising. Furthermore, the structural analysis phase is replaced by a neural network prediction for the computation of the necessary data required by the evolutionary algorithms. Advanced domain decomposition techniques particularly tailored for parallel solution of large-scale sensitivity analysis problems are also implemented. The efficiency of a rigorous approach for treating seismic loading is investigated and compared with a simplified dynamic analysis adopted by seismic codes in the framework of finding the optimum design of structures with minimum weight. In this context a number of accelerograms are produced from the elastic design response spectrum of the region. These accelerograms constitute the multiple loading conditions under which the structures are optimally designed. The numerical tests presented demonstrate the computational advantages of the discussed methods, which become more pronounced in large-scale optimization problems.

[1]  Michael A. Shanblatt,et al.  A two-phase optimization neural network , 1992, IEEE Trans. Neural Networks.

[2]  Manolis Papadrakakis,et al.  Structural optimization using evolution strategies and neural networks , 1998 .

[3]  J. Arora,et al.  Performance of some SQP algorithms on structural design problems , 1986 .

[4]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[5]  Jasbir S. Arora,et al.  Computational design optimization: A review and future directions , 1990 .

[6]  Prabhat Hajela,et al.  APPLICATIONS OF ARTIFICIAL NEURAL NETS IN STRUCTURAL MECHANICS , 1992 .

[7]  P. Pedersen Topology Optimization of Three-Dimensional Trusses , 1993 .

[8]  Erik Lund,et al.  A Method of “Exact” Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses* , 1993 .

[9]  M. Papadrakakis,et al.  Advanced solution methods in topology optimization and shape sensitivity analysis , 1996 .

[10]  A W Beeby,et al.  CONCISE EUROCODE FOR THE DESIGN OF CONCRETE BUILDINGS. BASED ON BSI PUBLICATION DD ENV 1992-1-1: 1992. EUROCODE 2: DESIGN OF CONCRETE STRUCTURES. PART 1: GENERAL RULES AND RULES FOR BUILDINGS , 1993 .

[11]  Günter Rudolph,et al.  Contemporary Evolution Strategies , 1995, ECAL.

[12]  Claude Fleury,et al.  Dual Methods for Convex Separable Problems , 1993 .

[13]  Hyun Myung,et al.  Preliminary Investigations into a Two-State Method of Evolutionary Optimization on Constrained Problems , 1995, Evolutionary Programming.

[14]  H. Adeli,et al.  Concurrent genetic algorithms for optimization of large structures , 1994 .

[15]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[16]  Manolis Papadrakakis,et al.  Optimization of Large-Scale 3-D Trusses Using Evolution Strategies and Neural Networks , 1999 .

[17]  M. Papadrakakis,et al.  Advanced solution methods in structural optimization based on evolution strategies , 1998 .

[18]  Richard H. Gallagher,et al.  Optimum Structural Design: Theory and Applications , 1973 .

[19]  Michael A. Saunders,et al.  User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .

[20]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[21]  Grant P. Steven,et al.  Optimal design of multiple load case structures using an evolutionary procedure , 1994 .

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  John S. Gero,et al.  Effect of Representation on the Performance of Neural Networks in Structural Engineering Applications , 1994 .

[24]  M. Papadrakakis,et al.  A computationally efficient method for the limit elasto plastic analysis of space frames , 1995 .

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[27]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[28]  H. A. Eschenauer,et al.  Decision Makings for Initial Designs Made of Advanced Materials , 1993 .

[29]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[30]  R. Daniel VanLuchene,et al.  INTEGRATED ASSESSMENT OF SEISMIC DAMAGE IN STRUCTURES , 1994 .

[31]  Khan Ai. Topping Bhv. and Bahreininejad A. Parallel training of neural networks for finite elementmesh generation , 1993 .

[32]  Leonard Spunt,et al.  Optimum structural design , 1971 .

[33]  Rong C. Shieh,et al.  Massively parallel structural design using stochastic optimization and mixed neuralnet/finite element analysis methods , 1994 .

[34]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[35]  Raphael T. Haftka,et al.  A Segregated Genetic Algorithm for Constrained Structural Optimization , 1995, ICGA.

[36]  Thomas Bäck,et al.  Genetic Algorithms and Evolution Strategies - Similarities and Differences , 1990, PPSN.

[37]  Chandrajit L. Bajaj,et al.  NURBS approximation of surface/surface intersection curves , 1994, Adv. Comput. Math..

[38]  L. Berke,et al.  Optimum Design of Aerospace Structural Components Using Neural Networks , 1993 .

[39]  E. Hinton,et al.  Fully stressed topological design of structures using an evolutionary procedure , 1995 .

[40]  Hojjat Adeli,et al.  Optimization of space structures by neural dynamics , 1995, Neural Networks.

[41]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[42]  Manolis Papadrakakis,et al.  STRUCTURAL SHAPE OPTIMIZATION USING EVOLUTION STRATEGIES , 1999 .

[43]  Manolis Papadrakakis,et al.  Structural reliability analyis of elastic-plastic structures using neural networks and Monte Carlo simulation , 1996 .

[44]  Manolis Papadrakakis,et al.  An optimized computer implementation of incomplete Cholesky factorization , 1994 .

[45]  H. Adeli,et al.  Augmented Lagrangian genetic algorithm for structural optimization , 1994 .

[46]  M. Papadrakakis,et al.  A new implementation of the Lanczos method in linear problems , 1990 .

[47]  L. A. Schmit,et al.  Structural Design Applications of Mathematical Programming Techniques. , 1971 .

[48]  Hojjat Adeli,et al.  A neural dynamics model for structural optimization—Theory , 1995 .

[49]  Behrooz Hassani Some experiences in structural topology optimization , 1995 .

[50]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[51]  C. Farhat,et al.  Extending substructure based iterative solvers to multiple load and repeated analyses , 1994 .

[52]  Nils Aall Barricelli,et al.  Numerical testing of evolution theories , 1963 .

[53]  G. I. N. Rozvany,et al.  Layout and Generalized Shape Optimization by Iterative COC Methods , 1993 .

[54]  Ekkehard Ramm,et al.  Efficient modeling in shape optimal design , 1991 .

[55]  Michael A. Shanblatt,et al.  Linear and quadratic programming neural network analysis , 1992, IEEE Trans. Neural Networks.

[56]  Prabhat Hajela,et al.  Counterpropagation neural networks in decomposition based optimal design , 1997 .

[57]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[58]  Prabhat Hajela,et al.  Neurobiological computational models in structural analysis and design , 1991 .

[59]  Manolis Papadrakakis,et al.  Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation , 1996 .

[60]  K. Schittkowski,et al.  Numerical comparison of nonlinear programming algorithms for structural optimization , 1994 .

[61]  Kalmanje Krishnakumar,et al.  Micro-Genetic Algorithms For Stationary And Non-Stationary Function Optimization , 1990, Other Conferences.

[62]  Barry Hilary Valentine Topping,et al.  Neural Computing for Structural Mechanics , 1999 .

[63]  John A. Stankovic,et al.  Distributed Processing , 1978, Computer.

[64]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[65]  H. Adeli,et al.  Integrated Genetic Algorithm for Optimization of Space Structures , 1993 .

[66]  A. Belegundu,et al.  A Computational Study of Transformation Methods for Optimal Design , 1984 .

[67]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[68]  Pericles S. Theocaris,et al.  Neural networks for computing in fracture mechanics. Methods and prospects of applications , 1993 .

[69]  Philip E. Gill,et al.  Practical optimization , 1981 .

[70]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[71]  M. Papadrakakis,et al.  Accuracy and effectiveness of preconditioned conjugate gradient algorithms for large and ill-conditioned problems , 1993 .

[72]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[73]  Noboru Kikuchi,et al.  Layout Optimization using the Homogenization Method , 1993 .