Proximal splitting algorithms: Relax them all!

Convex optimization problems, whose solutions live in very high dimensional spaces, have become ubiquitous. To solve them, proximal splitting algorithms are particularly adequate: they consist of simple operations, by handling the terms in the objective function separately. We present several existing proximal splitting algorithms and we derive new ones, within a unified framework, which consists in applying splitting methods for monotone inclusions, like the forward-backward algorithm, in primal-dual product spaces with well-chosen metric. This allows us to derive new convergence theorems with larger parameter ranges. In particular, when the smooth term in the objective function is quadratic, e.g. for least-squares problems, convergence is guaranteed with larger values of the relaxation parameter than previously known. Indeed, it is often the case in practice that the larger the relaxation parameter, the faster the convergence.

[1]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[2]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[3]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[4]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[5]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[6]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[7]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[8]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[9]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[10]  P. Tseng Applications of splitting algorithm to decomposition in convex programming and variational inequalities , 1991 .

[11]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[12]  G. Chen Forward-backward splitting techniques: theory and applications , 1994 .

[13]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[14]  P. L. Combettes,et al.  Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  P. L. Combettes,et al.  A Dykstra-like algorithm for two monotone operators , 2007 .

[17]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[18]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[19]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[20]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[21]  Jian-Feng Cai,et al.  Linearized Bregman Iterations for Frame-Based Image Deblurring , 2009, SIAM J. Imaging Sci..

[22]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[23]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[24]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[25]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[26]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[27]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[28]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[29]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[30]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[31]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[32]  I. Loris,et al.  On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty , 2011, 1104.1087.

[33]  P. L. Combettes,et al.  Variable metric forward–backward splitting with applications to monotone inclusions in duality , 2012, 1206.6791.

[34]  L. Briceño-Arias Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions , 2012, 1212.5942.

[35]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[36]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[37]  Jonathan Eckstein Augmented Lagrangian and Alternating Direction Methods for Convex Optimization: A Tutorial and Some Illustrative Computational Results , 2012 .

[38]  Laurent Condat,et al.  A Direct Algorithm for 1-D Total Variation Denoising , 2013, IEEE Signal Processing Letters.

[39]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[40]  William W. Hager,et al.  Bregman operator splitting with variable stepsize for total variation image reconstruction , 2013, Comput. Optim. Appl..

[41]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.

[42]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[43]  Dirk A. Lorenz,et al.  An Inertial Forward-Backward Algorithm for Monotone Inclusions , 2014, Journal of Mathematical Imaging and Vision.

[44]  Volkan Cevher,et al.  Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics , 2014, IEEE Signal Processing Magazine.

[45]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[46]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[47]  Marc Teboulle,et al.  A simple algorithm for a class of nonsmooth convex-concave saddle-point problems , 2015, Oper. Res. Lett..

[48]  James G. Scott,et al.  Proximal Algorithms in Statistics and Machine Learning , 2015, ArXiv.

[49]  A. Chambolle,et al.  A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions , 2015 .

[50]  Nikos Komodakis,et al.  Playing with Duality: An overview of recent primal?dual approaches for solving large-scale optimization problems , 2014, IEEE Signal Process. Mag..

[51]  A. Chambolle,et al.  On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm” , 2015, J. Optim. Theory Appl..

[52]  Xiaoqun Zhang,et al.  A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions , 2015, 1512.09235.

[53]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[54]  Xue-Cheng Tai,et al.  Some Facts About Operator-Splitting and Alternating Direction Methods , 2016 .

[55]  Shiqian Ma,et al.  Alternating Proximal Gradient Method for Convex Minimization , 2015, Journal of Scientific Computing.

[56]  Ali Emrouznejad,et al.  Big Data Optimization: Recent Developments and Challenges , 2016 .

[57]  Antonin Chambolle,et al.  An introduction to continuous optimization for imaging , 2016, Acta Numerica.

[58]  Colin N. Jones,et al.  Operator Splitting Methods in Control , 2016, Found. Trends Syst. Control..

[59]  Ming Yan,et al.  Self Equivalence of the Alternating Direction Method of Multipliers , 2014, 1407.7400.

[60]  Laurent Condat,et al.  Discrete Total Variation: New Definition and Minimization , 2017, SIAM J. Imaging Sci..

[61]  Kristian Bredies,et al.  A Proximal Point Analysis of the Preconditioned Alternating Direction Method of Multipliers , 2017, Journal of Optimization Theory and Applications.

[62]  Nelly Pustelnik,et al.  Proximity Operator of a Sum of Functions; Application to Depth Map Estimation , 2017, IEEE Signal Processing Letters.

[63]  Panagiotis Patrinos,et al.  Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators , 2016, Comput. Optim. Appl..

[64]  Patrick L. Combettes,et al.  Monotone operator theory in convex optimization , 2018, Math. Program..

[65]  Giovanni Chierchia,et al.  Proximity Operators of Discrete Information Divergences , 2016, IEEE Transactions on Information Theory.

[66]  Laurent Condat,et al.  A Convex Approach to Superresolution and Regularization of Lines in Images , 2019, SIAM J. Imaging Sci..

[67]  Hugo Raguet,et al.  A note on the forward-Douglas–Rachford splitting for monotone inclusion and convex optimization , 2017, Optim. Lett..

[68]  Ernest K. Ryu,et al.  Finding the Forward-Douglas–Rachford-Forward Method , 2019, J. Optim. Theory Appl..

[69]  Matthew K. Tam,et al.  A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity , 2018, SIAM J. Optim..

[70]  Ernest K. Ryu Uniqueness of DRS as the 2 operator resolvent-splitting and impossibility of 3 operator resolvent-splitting , 2018, Math. Program..

[71]  Lieven Vandenberghe,et al.  On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting , 2018, Math. Program..