3 – SOLID STATE NUCLEAR TRACK DETECTORS

Since its discovery in 1958 ( Young, 1958 ; Silk and Barnes, 1959 ), the technique now generally known as Solid State Nuclear Track Detection (SSNTD) has, over the last few decades, become a popular and well-established method of measurement in a large number of fields involving different aspects of radioactivity or nuclear interactions. The reasons for its widespread use include the basic simplicity of its methodology and the low cost of its materials, combined with the great versatility of its possible applications—as will become clear in what follows. Other important factors include the small geometry of the detectors, and their ability—in certain cases—to preserve their track record for almost infinite lengths of time (indeed, mineral grains in geological and planetary materials less than a millimeter across can, by suitable treatment, be made to reveal the billions of years old record of their radiation history). The fact that the detectors, in themselves, do not need any electronic/electrical instrumentation means that they can be deployed under field conditions and in remote, fairly inaccessible places for long durations of time without the need of human intervention or backup, except for initial placement and final retrieval; and their ruggedness is of great merit in making this possible.

[1]  R. Fleischer Tracks to Innovation , 1991 .

[2]  G. Somogyi,et al.  Development of etched nuclear tracks , 1980 .

[3]  S. A. Durrani,et al.  Nuclear tracks: A success story of the 20th century , 2001 .

[4]  J. Seidel,et al.  Radon Measurement Techniques , 1997 .

[5]  P. Price,et al.  a Versatile, Disposable Dosimeter for Slow and Fast Neutrons , 1963 .

[6]  L. Tommasino Personal dosimetry and area monitoring for neutrons and radon in workplaces , 2001 .

[7]  P. Price,et al.  Identification of Isotopes of Energetic Particles with Dielectric Track Detectors , 1967 .

[8]  Peter Van den haute,et al.  Fission track dating , 1992 .

[9]  R. Katz,et al.  Tracks to therapy. , 1999, Radiation measurements.

[10]  L. Drury,et al.  New Results on the Relative Abundance of Actinides in the Cosmic Radiation , 1999 .

[11]  I. Csige,et al.  Vacuum effect on the etch induction time and registration sensitivity of polymer track detectors , 1988 .

[12]  W. Cross,et al.  A rapid reading technique for nuclear particle damage tracks in thin foils , 1969 .

[13]  W. Heinrich,et al.  Measurements of elemental fragmentation cross section for relativistic heavy ions using CR39 plastic nuclear track detectors , 1988 .

[14]  R. Fleischer Serendipitous Radiation Monitors , 2002, American Scientist.

[15]  R. Ilić,et al.  Image formation in track-etch detectors. I, The large area signal transfer function , 1990 .

[16]  R. Ilić,et al.  Etched track radiometers in radon measurements: a review , 1999 .

[17]  A. Lennox Accelerators for cancer therapy , 2000 .

[18]  R. Pugliesi,et al.  Study of the neutron radiography characteristics for the solid state nuclear track detector Makrofol-DE , 2002 .

[19]  Reimar Spohr,et al.  Ion Tracks and Microtechnology , 1990 .

[20]  T. Tsuruta Effects of Heat-Treatment and Gamma-Ray Irradiation on the Etch-Pit Formation in Allyl Diglycol Carbonate Resin , 1997 .

[21]  F. Spurný Radiation doses at high altitudes and during space flights , 2001 .

[22]  D. Young,et al.  Etching of Radiation Damage in Lithium Fluoride , 1958, Nature.

[23]  E. V. Benton,et al.  Neutron dosimetry in low-earth orbit using passive detectors. , 2001, Radiation measurements.

[24]  A. P. Fews,et al.  Fully automated image analysis of etched tracks in CR-39 , 1992 .

[25]  T. Stöferle,et al.  Search for quantum states of the neutron in a gravitational field: gravitational levels , 2000 .

[26]  S. Durrani,et al.  A computer program for calculation of the dose-equivalent response of fast-neutron dosemeters based on electrochemically etched CR-39 detectors , 1987 .

[27]  A. S. Krivokhatskiy,et al.  Structure and application of equipment assembly for measurement of radon volume activity in houses and soils , 1991 .

[28]  J. Seidel,et al.  Radon and Volcanic Surveillance , 1997 .

[29]  M. Urban,et al.  Low Level Environmental Radon Dosimetry with a Passive Track Etch Detector Device , 1981 .

[30]  D. Bartlett,et al.  Investigation of Radiation Fields at Aircraft Altitudes , 2000 .

[31]  S. Durrani Radon concentration values in the field: Correlation with underlying geology , 1999 .

[32]  B. Dörschel,et al.  The physics of radiation protection , 1995 .

[33]  D. Lal,et al.  Surface irradiation and evolution of the lunar regolith , 1973 .

[34]  R. Ilić,et al.  Total charge-changing and partial cross-section measurements in the reactions of ∼ 110 – 250 M e V / n u c l e o n 12 C in carbon, paraffin, and water , 2002 .

[35]  J. Hakl,et al.  Radon Monitoring in Caves , 1997 .

[36]  P. Price,et al.  Origins of fossil charged‐particle tracks in meteorites , 1967 .

[37]  M. Hervieu,et al.  Swift, Heavy Ions in Insulating and Conducting Oxides: Tracks and Physical Properties , 1995 .

[38]  Li Zongwei,et al.  Search for heavy ion emission from the decay of U-230 , 2000 .

[39]  M. Balcázar Radon and Geothermal Energy Production , 1997 .

[40]  S. A. Durrani,et al.  Electrochemical etching of CR-39 plastic: Applications to radiation dosimetry , 1979 .

[41]  S. A. Durrani,et al.  Solid state nuclear track detection , 1985 .

[42]  S. Durrani,et al.  High-energy neutron spectrometry with plastic SSNTDs , 1980 .

[43]  A. Gleadow,et al.  Apatite Fission-Track Analysis as a Paleotemperature Indicator for Hydrocarbon Exploration , 1989 .

[44]  E. V. Benton,et al.  CHARGED PARTICLE TRACKS IN POLYMERS NO. 5: A COMPUTER CODE FOR THE COMPUTATION OF HEAVY-ION RANGE-ENERGY RELATIONSHIPS IN ANY STOPPING MATERIAL, , 1967 .

[45]  R. Brandt Some contributions from SSNTD towards nuclear science: from multifragmentation towards accelerator driven systems (ADS) , 2001 .

[46]  I. E. Qureshi,et al.  SSNTD applications in science and technology : A brief review , 1999 .

[47]  A. A. Harms,et al.  Mathematics and physics of neutron radiography , 1986 .

[48]  R. C. Ramola,et al.  Uranium and radon estimation in some water samples from Himalayas , 1988 .

[49]  M. Pelliccioni,et al.  The Italian national survey of aircrew exposure: II. On-board measurements and results. , 2001, Radiation protection dosimetry.

[50]  C. Renfrew,et al.  Obsidian Source Identification by Fission Track Analysis , 1971, Nature.

[51]  Matiullah,et al.  Development of Thermal and Fast Neutron Dose Equivalent Dosemeter Using CR-39 Detector with Radiators/Converters , 1988 .

[52]  H. R. Hart,et al.  The particle track record of lunar soil , 1971 .

[53]  D. Storzer,et al.  244Pu fission track thermometry and its application to stony meteorites , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[54]  K. Harrison A neutron dosimeter based on 237Np fission , 1978 .

[55]  A. Berezhnoy,et al.  Application of SSNTD for maintenance of radiation and nuclear safety of the Sarcophagus , 1999 .

[56]  Price,et al.  Discovery of radioactive decay of 222Ra and 224Ra by 14C emission. , 1985, Physical review letters.

[57]  Anthony J. Peurrung,et al.  Recent developments in neutron detection , 2000 .

[58]  G. Jönsson Soil Radon Surveys , 1997 .

[59]  H. A. Khan,et al.  Radon and Mineral Exploration , 1997 .

[60]  A. Eid,et al.  CR-39 carbonate plastic as a neutron albedo and threshold dosimeter , 1981 .

[61]  R. Walker,et al.  Observation of Fossil Particle Tracks in Natural Micas , 1962, Nature.

[62]  L. Leakey,et al.  Fission Track Dating of a Mesolithic Knife , 1965, Nature.

[63]  H. Dammak,et al.  Ion Tracks in Metals and Intermetallic Compounds , 1995 .

[64]  G. Jönsson Indoor Radon Surveys , 1997 .

[65]  H. Yonehara,et al.  Spatial distribution of thoron and radon concentrations in the indoor air of a traditional Japanese wooden house. , 1994, Health physics.

[66]  A. Tidjani Property modifications in UV irradiated polymeric track detectors , 1991 .

[67]  R. Ilić,et al.  Radon Monitoring Devices Based on Etched Track Detectors , 1997 .

[68]  S. Durrani Track record in meteorites , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  R. Ilić,et al.  Selective radiography with etched track detectors , 1999 .

[70]  R. Fleischer Radon and Earthquake Prediction , 1997 .

[71]  Matiullah,et al.  Chemical and electrochemical registration of protons in CR-39 — implications for neutron dosimetry , 1987 .

[72]  Matiullah,et al.  A practical fast-neutron dosemeter based on electrochemically etched CR-39 detector with angle-independent response , 1988 .

[73]  M A Hill,et al.  Radiation damage to DNA: the importance of track structure. , 1999, Radiation measurements.

[74]  E. Lehmann,et al.  Neutron capture autoradiography for a study on boron neutron capture therapy , 2001 .

[75]  A. Tidjani Effects of UV light on the efficiency of alpha-particle detection of CR-39, LR-115 type II and CN-85 , 1990 .

[76]  L. Drury,et al.  The cosmic ray actinide charge spectrum derived from a 10 m2 array of solid state nuclear track detectors in Earth orbit. , 2001, Radiation measurements.

[77]  V. Perelygin,et al.  Man-made plutonium in environment : Possible serious hazard for living species , 1997 .

[78]  R. Ilić,et al.  Low energy alpha particle spectroscopy using CR-39 detector , 1999 .

[79]  R. Fleischer Radon in the environment—Opportunities and hazards , 1988 .

[80]  L. Tommasino Assessment of natural and man-made alpha emitting radionuclides , 1988 .

[81]  H. Rose,et al.  A new kind of natural radioactivity , 1984, Nature.

[82]  W. Greiner,et al.  Systematics of cluster decay modes , 2002 .

[83]  R. Ilić,et al.  Image formation in track-etch detectors—IV. Image quality , 1990 .

[84]  R. Ilić,et al.  Image formation in track-etch detectors—III. The space-dependent transfer function in thick detectors , 1990 .

[85]  S. Durrani The effect of irradiation temperature on the response of track recording crystalline and polymeric media: A brief review , 1991 .

[86]  S. Durrani,et al.  Fast-neutron spectrometry using the triple-α reaction in the CR-39 detector , 1986 .

[87]  P. Price,et al.  Tracks of heavy primary cosmic rays in meteorites , 1967 .

[88]  R. Brandt,et al.  Fission track autoradiography as a means to investigate plants for their contamination with natural and technogenic uranium , 1995 .

[89]  V. L. Mikheev,et al.  Study of cluster decay of 242Cm using SSNTD , 2001 .

[90]  M. H. Battey,et al.  Book Review: Nuclear tracks in solids: Principles and applications. R. L. FLEISCHER, P.B. PRICE and R.M. WALKER. University of California Press, 1975, 629 pp., $31.50 , 1976 .

[91]  S. Durrani Alpha-Particle Etched Track Detectors , 1997 .

[92]  H. Schuhmacher,et al.  Development of personal neutron dosemeters at the PTB and first measurements in the space station MIR. , 2001, Radiation measurements.

[93]  S. Durrani,et al.  Cosmic ray tracks in the Shalka meteorite , 1976 .

[94]  G. Åkerblom,et al.  Geology and Radon , 1997 .

[95]  M. Oliver,et al.  Determining the Spatial Scale of Variation in Soil Radon Values Using a Nested Survey and Analysis , 1993 .

[96]  Matiullah,et al.  An integrated-circuits based variable power supply for electrochemical etching , 1987 .

[97]  V Ditlov,et al.  The evolution of track theory throughout the history of the international solid state detector conferences , 2001 .

[98]  A. Golovchenko,et al.  A method of trajectory tracing of Z⩽10 ions in the energy region below , 2001 .

[99]  S. Durrani,et al.  Variation of alpha-particle track diameter in CR-39 as a function of residual energy and etching conditions , 1999 .

[100]  D. O'sullivan,et al.  Investigation of cosmic rays and their secondaries at aircraft altitudes. , 2001, Radiation measurements.

[101]  W. Heinrich,et al.  The Siegen automatic measuring system for track detectors: New developments , 1991 .

[102]  R. Fleischer Radon: Overview of Properties, Origin, and Transport , 1997 .

[103]  R. S. Barnes,et al.  Examination of fission fragment tracks with an electron microscope , 1959 .

[104]  G. Hardcastle NRPB etched-track detectors for area monitoring of radon , 1996 .

[105]  R. Fleischer,et al.  Mapping of integrated radon emanation for detection of long-distance migration of gases within the Earth: Techniques and principles , 1978 .

[106]  G. Wagner Fission-track ages and their geological interpretation , 1981 .

[107]  S. Durrani,et al.  Track Profile Technique (TPT) and its applications using CR-39. I: Range and energy measurements of alpha-particles and fission fragments , 1984 .

[108]  S. Durrani,et al.  Particle identification from track-etch rates in minerals , 1978 .

[109]  J. Skvarč,et al.  Fast neutron detection with coincidence counting of recoil tracks in CR-39 , 2002 .

[110]  R. Ilić,et al.  Neutron radiographic characteristics of MA-ND type (allyl-diglycol-carbonate) nuclear track detectors , 1986 .