An approximate solution treatment for non-linear problems
暂无分享,去创建一个
[1] Tien-Yien Li,et al. Homotopy method for generalized eigenvalue problems Ax= ΛBx☆ , 1987 .
[2] A. Maccari,et al. Approximate Solution of a Class of Nonlinear Oscillators in Resonance with a Periodic Excitation , 1998 .
[3] A. Dold. Lectures on Algebraic Topology , 1972 .
[4] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[5] J. Yorke,et al. Regularity results for real analytic homotopies , 1985 .
[6] Siddhartha Sen,et al. Topology and geometry for physicists , 1983 .
[7] A. Maccari,et al. Parametric Excitation for Two Internally Resonant van der Pol Oscillators , 2002 .
[8] G. M. Abd El-Latif,et al. On a problem of modified Lindstedt-Poincare for certain strongly non-linear oscillators , 2004, Appl. Math. Comput..
[9] A. Maccari. A model system for the behavior of two non-linearly coupled oscillators , 1998 .
[10] Tien Yien Li,et al. Regularity results for solving systems of polynomials by homotopy method , 1986 .
[11] Shijun Liao,et al. A Second-Order Approximate Analytical Solution of a Simple Pendulum by the Process Analysis Method , 1992 .
[12] S. Liao. APPLICATION OF PROCESS ANALYSIS METHOD TO THE SOLUTION OF 2-D NONLINEAR PROGRESSIVE GRAVITY WAVES , 1992 .
[13] Shijun Liao,et al. Higher‐order streamfunction‐vorticity formulation of 2D steady‐state Navier‐Stokes equations , 1992 .
[14] G. M. Abd El-Latif. Parametric excitation for forcing van der Pol oscillator , 2004, Appl. Math. Comput..
[15] Georges Papy. Topologie als Grundlage des Analysis-Unterrichts , 1968 .
[16] Andras Z. Szeri,et al. Flow of variable-viscosity fluid between eccentric rotating cylinders☆ , 1992 .
[17] Qinsheng Bi. Dynamical analysis of two coupled parametrically excited van der Pol oscillators , 2004 .
[18] Masakazu Kojima,et al. A PL homotopy for finding all the roots of a polynomial , 1979, Math. Program..
[19] H. Schwetlick,et al. Stoer, J. / Bulirsch, R., Einführung in die Numerische Mathematik II, IX, 286 S., 1973. DM 14,80, US $ 5.50. Berlin-Heidelberg-New York. Springer-Verlag , 1978 .