An approximate solution treatment for non-linear problems

In this paper, we study one-simple, typical non-linear equation to describe a kind of analytical technique for non-linear problems. This technique is based on both homotopy in topology and the Maclaurin series. In contrast to perturbation techniques, the homotopy technique does not require small or large parameters. The results show that the homotopy technique can give much better approximation than given by perturbation techniques. In addition the homotopy technique can be used to obtain formula uniformly valid for both small and large parameters in non-linear problems. It is clear that the homotopy technique is suitable for strongly non-linear problems.

[1]  Tien-Yien Li,et al.  Homotopy method for generalized eigenvalue problems Ax= ΛBx☆ , 1987 .

[2]  A. Maccari,et al.  Approximate Solution of a Class of Nonlinear Oscillators in Resonance with a Periodic Excitation , 1998 .

[3]  A. Dold Lectures on Algebraic Topology , 1972 .

[4]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[5]  J. Yorke,et al.  Regularity results for real analytic homotopies , 1985 .

[6]  Siddhartha Sen,et al.  Topology and geometry for physicists , 1983 .

[7]  A. Maccari,et al.  Parametric Excitation for Two Internally Resonant van der Pol Oscillators , 2002 .

[8]  G. M. Abd El-Latif,et al.  On a problem of modified Lindstedt-Poincare for certain strongly non-linear oscillators , 2004, Appl. Math. Comput..

[9]  A. Maccari A model system for the behavior of two non-linearly coupled oscillators , 1998 .

[10]  Tien Yien Li,et al.  Regularity results for solving systems of polynomials by homotopy method , 1986 .

[11]  Shijun Liao,et al.  A Second-Order Approximate Analytical Solution of a Simple Pendulum by the Process Analysis Method , 1992 .

[12]  S. Liao APPLICATION OF PROCESS ANALYSIS METHOD TO THE SOLUTION OF 2-D NONLINEAR PROGRESSIVE GRAVITY WAVES , 1992 .

[13]  Shijun Liao,et al.  Higher‐order streamfunction‐vorticity formulation of 2D steady‐state Navier‐Stokes equations , 1992 .

[14]  G. M. Abd El-Latif Parametric excitation for forcing van der Pol oscillator , 2004, Appl. Math. Comput..

[15]  Georges Papy Topologie als Grundlage des Analysis-Unterrichts , 1968 .

[16]  Andras Z. Szeri,et al.  Flow of variable-viscosity fluid between eccentric rotating cylinders☆ , 1992 .

[17]  Qinsheng Bi Dynamical analysis of two coupled parametrically excited van der Pol oscillators , 2004 .

[18]  Masakazu Kojima,et al.  A PL homotopy for finding all the roots of a polynomial , 1979, Math. Program..

[19]  H. Schwetlick,et al.  Stoer, J. / Bulirsch, R., Einführung in die Numerische Mathematik II, IX, 286 S., 1973. DM 14,80, US $ 5.50. Berlin-Heidelberg-New York. Springer-Verlag , 1978 .