Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography

Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions.

[1]  J. Daunizeau,et al.  Conditional correlation as a measure of mediated interactivity in fMRI and MEG/EEG , 2005, IEEE Transactions on Signal Processing.

[2]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[3]  D L Chopp Replacing iterative algorithms with single-pass algorithms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[5]  Nazim Madhavji,et al.  Organization , 2020, WER.

[6]  F. Gonzalez-Lima,et al.  Structural equation modeling and its application to network analysis in functional brain imaging , 1994 .

[7]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[8]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[9]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[10]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[11]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  John S. Duncan,et al.  Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study , 2006, NeuroImage.

[13]  Qingfen Lin,et al.  Enhancement, Extraction, and Visualization of 3D Volume Data , 2001 .

[14]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[15]  Carl-Fredrik Westin,et al.  New Approaches to Estimation of White Matter Connectivity in Diffusion Tensor MRI: Elliptic PDEs and Geodesics in a Tensor-Warped Space , 2002, MICCAI.

[16]  Guy M. McKhann,et al.  Non-invasive Mapping of Connections Between Human Thalamus and Cortex Using Diffusion Imaging , 2004 .

[17]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[18]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[20]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[21]  Gareth J. Barker,et al.  Diffusion tensor imaging in schizophrenia , 2008, European Psychiatry.

[22]  Peter Boesiger,et al.  Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging , 2006, NeuroImage.

[23]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[24]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[25]  Alan C. Evans,et al.  Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. , 2007, Cerebral cortex.

[26]  Timothy Edward John Behrens,et al.  Quantitative Investigation of Connections of the Prefrontal Cortex in the Human and Macaque using Probabilistic Diffusion Tractography , 2005, The Journal of Neuroscience.

[27]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[28]  F. Crick,et al.  Backwardness of human neuroanatomy , 1993, Nature.

[29]  Habib Benali,et al.  A level set method for building anatomical connectivity paths between brain areas using DTI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[30]  D. P. Russell,et al.  Functional Clustering: Identifying Strongly Interactive Brain Regions in Neuroimaging Data , 1998, NeuroImage.

[31]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Lawrence H. Staib,et al.  White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging , 2005, Medical Image Anal..

[33]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[34]  Timothy Edward John Behrens,et al.  Connection patterns distinguish 3 regions of human parietal cortex. , 2006, Cerebral cortex.

[35]  G. Edelman,et al.  Theoretical neuroanatomy and the connectivity of the cerebral cortex , 2002, Behavioural Brain Research.

[36]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[37]  J. Sethian,et al.  Ordered upwind methods for static Hamilton–Jacobi equations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[39]  Gareth J. Barker,et al.  Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging , 2002, IEEE Transactions on Medical Imaging.

[40]  M. Kraut,et al.  Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo , 2002, Annals of neurology.

[41]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[42]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[43]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[44]  M. Greicius,et al.  Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI , 2004, Proc. Natl. Acad. Sci. USA.

[45]  V. Smirnov,et al.  A course of higher mathematics , 1964 .

[46]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[48]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[49]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[50]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[51]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.