Materials for rechargeable lithium-ion batteries.

The lithium-ion battery is the most promising battery candidate to power battery-electric vehicles. For these vehicles to be competitive with those powered by conventional internal combustion engines, significant improvements in battery performance are needed, especially in the energy density and power delivery capabilities. Recent discoveries and advances in the development of electrode materials to improve battery performance are summarized. Promising substitutes for graphite as the anode material include silicon, tin, germanium, their alloys, and various metal oxides that have much higher theoretical storage capacities and operate at slightly higher and safer potentials. Designs that attempt to accommodate strain owing to volumetric changes upon lithiation and delithiation are presented. All known cathode materials have storage capacities inferior to those of anode materials. In addition to variations on known transition metal oxides and phosphates, other potential materials, such as metal fluorides, are discussed as well as the effects of particle size and electrode architecture. New electrolyte systems and additives as well as their effects on battery performance, especially with regard to safety, are described.

[1]  Harold H. Kung,et al.  In‐Plane Vacancy‐Enabled High‐Power Si–Graphene Composite Electrode for Lithium‐Ion Batteries , 2011 .

[2]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[3]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[4]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[5]  John B. Goodenough,et al.  Challenges for rechargeable batteries , 2011 .

[6]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[7]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[8]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[9]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[10]  Zhenguo Yang,et al.  Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. , 2011, Physical chemistry chemical physics : PCCP.

[11]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[12]  L. Gu,et al.  Carbon nanotube wiring of electrodes for high-rate lithium batteries using an imidazolium-based ionic liquid precursor as dispersant and binder: a case study on iron fluoride nanoparticles. , 2011, ACS nano.

[13]  Ping He,et al.  Olivine LiFePO4: development and future , 2011 .

[14]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[15]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[16]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[17]  Dong-Hwa Seo,et al.  Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries , 2010, Advanced materials.

[18]  Bruno Scrosati,et al.  Moving to a Solid‐State Configuration: A Valid Approach to Making Lithium‐Sulfur Batteries Viable for Practical Applications , 2010, Advanced materials.

[19]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[20]  Bruno Scrosati,et al.  High‐Performance Carbon‐LiMnPO4 Nanocomposite Cathode for Lithium Batteries , 2010 .

[21]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[22]  Robert Dominko,et al.  Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries. , 2010, Angewandte Chemie.

[23]  L. Gu,et al.  Low‐Temperature Ionic‐Liquid‐Based Synthesis of Nanostructured Iron‐Based Fluoride Cathodes for Lithium Batteries , 2010, Advanced materials.

[24]  Hyun-Wook Lee,et al.  Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. , 2010, Nano letters.

[25]  Mark F. Mathias,et al.  Electrochemistry and the Future of the Automobile , 2010 .

[26]  Xingjiang Liu,et al.  Microstructure and electrochemical performance of Si–SiO2–C composites as the negative material for Li-ion batteries , 2010 .

[27]  M. Thackeray,et al.  LixCu6Sn5 (0 < x < 13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries. , 2010 .

[28]  Paul Albertus,et al.  Batteries for electric and hybrid-electric vehicles. , 2010, Annual review of chemical and biomolecular engineering.

[29]  Sehee Lee,et al.  Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li‐Ion Batteries , 2010, Advanced materials.

[30]  Jaephil Cho,et al.  Porous Si anode materials for lithium rechargeable batteries , 2010 .

[31]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[32]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[33]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[34]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[35]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[36]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[37]  Stephen J. Harris,et al.  In Situ Observation of Strains during Lithiation of a Graphite Electrode , 2010 .

[38]  Haoshen Zhou,et al.  Fast Li-Ion insertion into nanosized LiMn(2)O(4) without domain boundaries. , 2010, ACS nano.

[39]  Ting Li,et al.  Reversible Three-Electron Redox Behaviors of FeF3 Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries , 2010 .

[40]  Wanli Xu,et al.  Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells , 2010 .

[41]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[42]  Wu Xu,et al.  Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment , 2009 .

[43]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[44]  Jenn‐Shing Chen,et al.  Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors , 2009 .

[45]  Li Yang,et al.  Template-free synthesis of mesoporous spinel lithium titanate microspheres and their application in high-rate lithium ion batteries , 2009 .

[46]  Hongwei Tang,et al.  Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries , 2009 .

[47]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[48]  Gang Chen,et al.  Nanoscale design to enable the revolution in renewable energy , 2009, Energy &amp; Environmental Science.

[49]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[50]  M. Thackeray,et al.  High-Capacity, Microporous Cu6Sn5 – Sn Anodes for Li-Ion Batteries , 2009 .

[51]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[52]  C. Wen,et al.  Performance of a proton exchange membrane fuel cell stack with thermally conductive pyrolytic graphite sheets for thermal management , 2009 .

[53]  P. Moreau,et al.  Hierarchical and Resilient Conductive Network of Bridged Carbon Nanotubes and Nanofibers for High-Energy Si Negative Electrodes , 2009 .

[54]  Z. Wen,et al.  Preparation and characterization of a new nanosized silicon–nickel–graphite composite as anode material for lithium ion batteries , 2009 .

[55]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[56]  A. Manthiram Phospho-Olivine Cathodes for Lithium-Ion Batteries , 2009 .

[57]  Zhen Zhou,et al.  Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites , 2009 .

[58]  Hao Gong,et al.  Storage performance of LiFePO4 nanoplates , 2009 .

[59]  Joong-Kee Lee,et al.  Structural and electrochemical properties of fullerene-coated silicon thin film as anode materials for lithium secondary batteries , 2009 .

[60]  L. Trahey,et al.  Nanocomposites Derived from Phenol-Functionalized Si Nanoparticles for High Performance Lithium Ion Battery Anodes , 2009 .

[61]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[62]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[63]  P. Balaya Size effects and nanostructured materials for energy applications , 2008 .

[64]  P. Bruce,et al.  Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[65]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[66]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[67]  Craig A. J. Fisher,et al.  Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior , 2008 .

[68]  L. J. Lyons,et al.  Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications , 2008 .

[69]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[70]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[71]  T. Takamura,et al.  The structural evolution and lithiation behavior of vacuum-deposited Si film with high reversible capacity , 2008 .

[72]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[73]  C. Grey,et al.  Molten Salt Synthesis and High Rate Performance of the “Desert‐Rose” form of LiCoO2 , 2008 .

[74]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[75]  Martin Winter,et al.  Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability , 2008 .

[76]  M. Armand,et al.  Building better batteries , 2008, Nature.

[77]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[78]  S. Maithel Energy Efficiency and Renewable Energy , 2008 .

[79]  Sung-Man Lee,et al.  Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries , 2008 .

[80]  M. Schweizer-Berberich,et al.  Optimization of Cycling Behavior of Lithium Ion Cells at 60°C by Additives for Electrolytes Based on Lithium bis[1,2-oxalato(2-)-OO´] borate , 2008, International Journal of Electrochemical Science.

[81]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[82]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[83]  Tsutomu Ohzuku,et al.  An overview of positive-electrode materials for advanced lithium-ion batteries , 2007 .

[84]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .

[85]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[86]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[87]  P. Moreau,et al.  Synthesis of nanosized Si particles via a mechanochemical solid–liquid reaction and application in Li-ion batteries , 2007 .

[88]  M. Doeff,et al.  Factors Influencing the Quality of Carbon Coatings on LiFePO4 , 2007 .

[89]  J. Dahn,et al.  Isotropic Volume Expansion of Particles of Amorphous Metallic Alloys in Composite Negative Electrodes for Li-Ion Batteries , 2007 .

[90]  Hiroyuki Nishide,et al.  Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. , 2007, Chemical communications.

[91]  G. Amatucci,et al.  Fluoride based electrode materials for advanced energy storage devices , 2007 .

[92]  Robert Spotnitz,et al.  Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries , 2007 .

[93]  Feng Jiao,et al.  Mesoporous Crystalline β‐MnO2—a Reversible Positive Electrode for Rechargeable Lithium Batteries , 2007 .

[94]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[95]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[96]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[97]  J. Besenhard,et al.  Synthesis and Characterization of Nanoporous NiSi-Si Composite Anode for Lithium-Ion Batteries , 2007 .

[98]  Yi Cui,et al.  Fast, completely reversible li insertion in vanadium pentoxide nanoribbons. , 2007, Nano letters.

[99]  T. Seong,et al.  Formation and characterization of Cu–Si nanocomposite electrodes for rechargeable Li batteries , 2006 .

[100]  John T. Vaughey,et al.  Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries☆ , 2006 .

[101]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[102]  R. Holze,et al.  Surface modifications of electrode materials for lithium ion batteries , 2006 .

[103]  Weiyang Li,et al.  Vapor-transportation preparation and reversible lithium intercalation/deintercalation of alpha-MoO3 microrods. , 2006, The journal of physical chemistry. B.

[104]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[105]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[106]  G. Cao,et al.  Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures. , 2005, The journal of physical chemistry. B.

[107]  Jisuk Kim,et al.  Controlled Nanoparticle Metal Phosphates (Metal = Al , Fe, Ce, and Sr) Coatings on LiCoO2 Cathode Materials , 2005 .

[108]  L. S. Kanevskii,et al.  Degradation of lithium-ion batteries and how to fight it: A review , 2005 .

[109]  P. Balaya,et al.  Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides , 2004 .

[110]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[111]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[112]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[113]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[114]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[115]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[116]  Yadong Li,et al.  Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. , 2004, Angewandte Chemie.

[117]  L. J. Lyons,et al.  Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo(oxyethylene) side chains: Synthesis and conductivity , 2003 .

[118]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[119]  N. Dudney,et al.  Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .

[120]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[121]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[122]  K. Amine,et al.  Synthesis and Electrochemical Properties of ZnO-Coated LiNi0.5Mn1.5 O 4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries [Electrochemical and Solid-State Letters, 5, A99 (2002)] , 2002 .

[123]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[124]  Shigeyuki Iwasa,et al.  Rechargeable batteries with organic radical cathodes , 2002 .

[125]  Yang-Kook Sun,et al.  Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries , 2002 .

[126]  J. Paulsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[127]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[128]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[129]  S. Passerini,et al.  Lithium ion insertion in porous metal oxides , 1999 .

[130]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[131]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[132]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[133]  D. Song The spinel phases LiAlyMn2−yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al,M)1/6Mn11/6O4 (M=Cr, Co) as the cathode for rechargeable lithium batteries , 1999 .

[134]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[135]  P. Novák,et al.  Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system , 1997 .

[136]  Hajime Arai,et al.  Cathode performance and voltage estimation of metal trihalides , 1997 .

[137]  L. J. Lyons,et al.  TRANSPORT AND ELECTRON TRANSFER DYNAMICS IN A POLYETHER-TAILED COBALT BIPYRIDINE MOLTEN SALT: ELECTROLYTE EFFECTS , 1997 .

[138]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[139]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[140]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[141]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[142]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[143]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[144]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[145]  Simon S. Woo,et al.  Applications of Metallocenes in Rechargeable Lithium Batteries for Overcharge Protection , 1992 .

[146]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[147]  Subbarao Surampudi,et al.  Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries , 1991 .

[148]  Tsutomu Ohzuku,et al.  Electrochemistry of manganese dioxide in lithium nonaqueous cell. I: X-ray diffractional study on the reduction of electrolytic manganese dioxide , 1990 .

[149]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[150]  P. Claes,et al.  Properties of mixtures of zinc chloride and N-methylpyridinium chloride in the molten state—II. Specific mass, electrical conductivity and viscosity , 1986 .

[151]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[152]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[153]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[154]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .