High-surface-area TiO2 and TiN as catalysts for the C-C coupling of alcohols and ketones.

To design more sustainable processes for the alkylation of ketones, the use of both atom-ineffective leaving groups such as halides and boron as well as noble-metal-based catalysts should be avoided. For that purpose, high-surface-area titanium nitride was prepared from high-surface-area titanium dioxide using cyanamide as a transcription agent. The resulting nitride as well as the initial oxide proved to be effective and versatile catalysts for the alkylation of ketones with alcohols. Interestingly, the TiN catalyst yields unsaturated compounds, while the oxide-based catalyst mainly yields saturated coupling products. As a result of its metallic properties, TiN shows a strong tendency to catalyse the dehydrogenation of alcohols, which then undergo aldol condensation with ketones. In contrast, TiO(2) promotes the direct nucleophilic attack of ketones on alcohols.

[1]  M. Antonietti,et al.  Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes , 2007 .

[2]  M. Antonietti,et al.  Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source , 2007 .

[3]  M. Antonietti,et al.  Metal-free activation of CO2 by mesoporous graphitic carbon nitride. , 2007, Angewandte Chemie.

[4]  Arne Thomas,et al.  Metallfreie Aktivierung von CO2 mit mesoporösem graphitischem Kohlenstoffnitrid , 2007 .

[5]  M. Yus,et al.  Alcohols as electrophiles in C--C bond-forming reactions: the hydrogen autotransfer process. , 2007, Angewandte Chemie.

[6]  Diego J. Ramón,et al.  C‐C‐Kupplungen mit Alkoholen als Elektrophilen: der Wasserstoff‐Autotransfer , 2007 .

[7]  Ashin Marin Thomas,et al.  Growth Confined by the Nitrogen Source: Synthesis of Pure Metal Nitride Nanoparticles in Mesoporous Graphitic Carbon Nitride , 2007 .

[8]  C. Sanchez,et al.  Highly regioselective terminal alkynes hydroformylation and Pauson-Khand reaction catalysed by mesoporous organised zirconium oxide based powders. , 2006, Chemical communications.

[9]  M. Antonietti,et al.  Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. , 2006, Chemical communications.

[10]  Feng Yang,et al.  Effect of Fe-doping on the pore structure of mesoporous titania , 2006 .

[11]  M. Whittlesey,et al.  C–C Bond formation from alcohols using a Xantphos ruthenium complex , 2006 .

[12]  A. Corma,et al.  Silica-Bound Homogenous Catalysts as Recoverable and Reusable Catalysts in Organic Synthesis , 2006 .

[13]  M. Antonietti,et al.  Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. , 2006, Angewandte Chemie.

[14]  Arne Thomas,et al.  Chemische Synthese von mesoporösen Kohlenstoffnitriden in harten Templaten und ihre Anwendung als metallfreie Katalysatoren in Friedel‐Crafts‐Reaktionen , 2006 .

[15]  Justin M. Notestein,et al.  Enhancing heterogeneous catalysis through cooperative hybrid organic-inorganic interfaces. , 2006, Chemistry.

[16]  M. Yasuda,et al.  Direct carbon-carbon bond formation from alcohols and active methylenes, alkoxyketones, or indoles catalyzed by indium trichloride. , 2006, Angewandte Chemie.

[17]  C. Sanchez,et al.  New hybrid bidentate ligands as precursors for smart catalysts. , 2005, Chemistry.

[18]  Masashi Hasegawa,et al.  Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating , 2005 .

[19]  Seong Hyeok Seo,et al.  Recyclable Palladium Catalyst for Highly Selective α Alkylation of Ketones with Alcohols , 2005 .

[20]  S. K. Bej,et al.  Basic properties of molybdenum and tungsten nitride catalysts , 2005 .

[21]  R. Mestres A green look at the aldol reaction , 2004 .

[22]  P. Dalko,et al.  In the golden age of organocatalysis. , 2004, Angewandte Chemie.

[23]  Peter I. Dalko,et al.  Im Goldenen Zeitalter der Organokatalyse , 2004 .

[24]  S. Kaskel,et al.  Catalytic properties of high surface area titanium nitride materials , 2004 .

[25]  N. Chatani,et al.  Catalytic Methods for C ? H Bond Functionalization: Application in Organic Synthesis , 2003 .

[26]  W. Schnick,et al.  Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. , 2003, Journal of the American Chemical Society.

[27]  C. Copéret,et al.  Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry. , 2003, Angewandte Chemie.

[28]  Jean-Marie Basset,et al.  Homogene und heterogene Katalyse – Brückenschlag durch Oberflächen‐Organometallchemie , 2003 .

[29]  R. Anwander SOMC@PMS. Surface Organometallic Chemistry at Periodic Mesoporous Silica† , 2001 .

[30]  B. Chaudret,et al.  Catalytic Formation of Carbon–Carbon Bonds by Activation of Carbon–Hydrogen Bonds , 1999 .

[31]  M. Savignac,et al.  Recent developments of palladium(0) catalyzed reactions in aqueous medium , 1999 .

[32]  J. Yates,et al.  TI3+ DEFECT SITES ON TIO2(110) : PRODUCTION AND CHEMICAL DETECTION OF ACTIVE SITES , 1994 .

[33]  K. Yvon,et al.  LAZY PULVERIX, a computer program, for calculating X‐ray and neutron diffraction powder patterns , 1977 .